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Size Effects on Structure and Morphology
of Free or Supported Nanoparticles

Size and Confinement Effects
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where R is the radius in nm. This empirical law gives a proportion of surface
atoms of 100% for a size of 1 nm. Of course, (1.1) is no longer valid for smaller
dimensions. We shall see that the fact that a large fraction of the atoms are
located at the surface of the object will modify its properties. To tackle this
question, we shall need to review certain physical quantities associated with
surfaces, namely the specific surface energy and the surface stress.




Reducing the size of a nanocrystal increases the relative importance of the
surface or interface between grains. Consequently, the state of the surface
or interface also predetermines the properties of the nanomaterial.

The variation of the parameters describing crystal structure can be under-
stood in relation to the nanocrystal surface using either thermodynamic or

microscopic approaches.

The state of the surface or interface of a nanocrystal can affect the crystal
structure parameters. However, it is still difficult to predict this effect or

estimate 1ts importance.




The thermodynamics of nanosystems differs significantly from the thermody-
namics of macroscopic systems, because a certain number of variables such

as_the energy, entropy. etc.., are only extensive in the thermodynamic limit,
i.e., when the number of particles making up the system tends to infinity.
Likewise, the equivalence of the (Gibbs ensembles (microcanonical, canonical,
and grand canonical) is only valid in this same limit. We shall see later (see

In the framework of statistical thermodynamics, Gibbs defined three so-called en-
sembles, corresponding a priori to different physical situations [1]. However, these
ensembles provide completely equivalent descriptions of macroscopic systems in the
thermodynamic limit. Let us recall their main features:

e Microcanonical Ensemble. The system is assumed isolated so that its energy is
constant. All the microscopic states corresponding to a given macroscopic state
are equiprobable.

e Canonical Ensemble. The system has fixed composition, but it can exchange
energy with a thermostat at temperature T'. The probability of occupation of an
energy state F is proportional to the Boltzmann factor exp(—FE/kgT).

e Grand Canonical Ensemble. The system can exchange energy with a thermostat
of temperature T" and components with a reservoir of particles having chemical
potential p. The occupation probability of an N-particle state with energy FE' is
proportional to exp | — (E — uN)/ksT].




Thermodynamics of Very Small Systems

Consider a simple thermodynamic system with volume V' and containing N
particles. This system is characterised by a function called the density of
states, given in classical mechanics by an integral over the phase space, viz.,

QE.V.N) = & / dqdp (3.11)
df H(q,p)<E,qcV

where g stands for all position coordinates, p stands for the generalised mo-
menta, and £ is the total energy of the system. In quantum mechanics, the
density of states is defined rather differently, but raises no particular difficul-
ties in this context. We consider the following Gibbs ensembles:



e Microcanonical Ensemble. Variables (E, V', N). Entropy and temperature
given by

Su(E,V,N) = kgln [2(E)] , (3.12)
| . 95\~ |
T.(E,V,N) = (6E) . (3.13)

e Canonical Ensemble. Variables (T, V', N). Setting 3 = 1/kgT, the parti-
tion function Z(/3,V, N) is defined by

Z(3.V,N) = f Q(E,V,N)e PEAE . (3.14)
The entropy S and internal energy U are given by

/EQ(E, V.N)e PEQE
Z(3.V,N)

U(B,V,N)
T

U(B,V,N) = (3.15)

S(3,V,N) = +kaln [Z(B.V.N)] . (3.16)



o (Grand Canonical Ensemble. Particles have variable size N. Since we wish

to obtain the behaviour of a cluster of given size, we shall not consider
this ensemble here.

In the thermodynamic limit, i.e., when N — oo with U/N — u and
V/N — v (u and v finite), the microcanonical and canonical ensembles lead

to the same predictions. This is what is meant by the equivalence of the ensem-
bles. Moreover, there is a function s(u,v) such that, as N — oo, the entropy
per molecule S/N — s. This is why the entropy is treated as an extensive func-
tion. However, for finite [NV, neither of these two properties is satisfied. The

In small clusters, the thermo-
dynamic properties can vary enormously from one size to another, and there
1s really no place for extensivity here.



Even if size effects such as structural changes or the influence of the surface
can be quantitatively important, they do not lead to a qualitative change in
the thermodynamic properties of single phase systems. On the other hand.
phase transitions can be considerably altered:

e [reduction of the transition temperature,
reduction of the latent heat.

e broadening of the temperature range over which phases can coexist.

Moreover, phase transitions are a typically polyatomic effect. To characterise
a phase, a certain minimum number of constituents is required. It makes no
sense, for example, to ask whether a diatomic molecule is liquid or solid. But
then, is there a size or size range for which phase transitions disappear?




from A. Zangwill, Physics at Surfaces, Cambridge university Press




Bulk Thermodynamics: A Short Reminder

One-component system. in equilibrium. are described completely by the internal energy U
U=U(S.V.N)

where S 1s the entropy. ¥ the volume. and N the number of moles.

The infinitesimal variation of U 1s thereby

w-(2) ase(Z) () ax
2)) V.N 24 S.N cN SV

which becomes:

dU = TdS — pdV + 1dN U=T15—-pV+uN

where T is the absolute temperature, p the pressure, and u the chemical potential.



By combining the above equations one arrives at the Gibbs-Duhem equation among the
intensive variables

SdT —Vdp + Ndu =0

Bulk + Surface Thermodynamics

When a surface of area 4 is created. via a cleavage process. the total internal energy of the
system must increase by an amount proportional to 4. since this process 1s not spontaneous.

U=TS—pV +uN +{A]

where ) 1s the constant of proportionality which 1s called surface tension.



Specific Surface Energy and Surface Stress

The specific surface energy ~ (J/m?) can be represented as the energy pro-
duced by cleaving a crystal divided by the surface area thereby created. More

generally, the specific surface energy can be defined as follows. In order to O

increase the surface area of an object by an amount dA, e.g., by changing the
shape of the object, the work required to do this will be

AW = ~dA|. (1.2)

~ is the specific surface energy. In this case, the area of the object has increased

by displacing atoms from the bulk to the surface. However, one could also
increase the area by stretching it, i.e., keeping the number of surface atoms
constant. The work required to do this will then be



[ = g;d4]. (1.3)

where ¢;; is the surface stress in J/m?. This is a tensorial quantity because

it depends on the crystallographic axes. The surface stress is related to the
elastic stresses resulting from deformation of the surface (strain). It is related
to the specific surface energy by

) O~
5= 07+ =], 1.4

where u;; is the strain tensor and ¢;; the Kronecker symbol. Note that for a
liquid there is no strain tensor and g;; = 7. Indeed, if one tries to increase the
surface area of a liquid, the bulk atoms will move to the surface to keep the
density constant. The surface stress reduces to the specific surface energy.

c=§8
u=g
on the basis of
used text

Surface stress

Fig. 1.3. A Au(111) surface buckled under surface stresses. Vertical
arrow marks a surface dislocation (Marks, Heine & Smuth, 1984).




Now. consider the effect of infinitesimal variations in the area of the system. e.g. by

stretching. Assuming the linear elastic theory holds. one gets c:ig
AT AT on the basis of
dU = [— dS+| — dv + used text
D)y N4 Vs N4
ol ou
+( — dN + Ay | — dg;
S.V.A i.J {?E& SVN

dU =TdS — pdV + pdN + A3 o de;
y
Where g, and ¢, are the components of the surface stress and surface strain tensors.
respectively.
Warning: Be aware of the dimensions of &, and &; dA/ A= Z dgg;'cgg
1.J

Ady + SdT —Vdp+ Ndu +

+4> (;rfﬁg — D‘E-;-)d&‘g =0
1.J

Gibbs-Duhem equation



Surface energy

)V = Efﬂh (ZS'XZ)NS

where E_, 1s the bulk cohesive energy. (Z/Z) the fractional number of bonds broken (per
surface atom). and V. the surface areal density.

Using typical values:

E_,=3eV.(Z/Z)=0.25, N_= 101 atoms/cm* we get ¥ = 1,200 erg/cm?

(from an atomic point of view, E_ ,=cohesive energy)

Fig. 1.4. Surface tension of the elements in the liquid phase (Schmit,
1974),
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Table 1. Surface tension calculated from equation (3), o.,.. compared with experimental values,
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Surface energies of metals in both liquid and solid states

Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine

AT) = YTw) + G2 (T = Tw)(m) m2)

Oup- OF Egry et al (1994).

Metal T/K Oexp/N M : Oeare/ N m' Deviation/%

Copper 1223 1.333 1.330 —0.23
1273 1.322 1.321 —0.08
1323 1.311 1.311 0.00
1373 1.300 1.301 0.08
1423 1.289 1.291 0.16
1473 1.278 1.282 0.31
1523 1.267 1.272 0.40
1573 1.256 1.262 0.48
1623 1.245 1.253 0.04
1673 1.234 1.243 0.73
1723 1.223 1.233 0.82

Gold 1323 1.122 1.123 0.09 _
1373 1.118 1.118 0.00 Fathi Aqra*,Ahmed Ayyad
1423 1.113 1.113 0.00
1473 1.109 1.108 —0.09
1523 1.104 1.103 —0.09
1573 1.100 1.099 —0.09
1623 1.095 1.094 —0.09
1673 1.091 1.089 —0.18
1723 1.086 1.084 —0.18
1773 1.082 1.079 —0.28
1823 1.077 1.074 —0.28
1873 1.073 1.070 —0.28

Silver 1193 0.9154 0.9160 0.07
1236 0.9076 0.9079 0.03
1279 0.8999 0.8999 0.00
1322 0.8922 0.8918 —0.05
1365 0.8844 0.8838 —0.07
1408 0.8767 0.8757 —0.11
1451 0.8689 0.8677 —0.14
1494 0.8612 0.8596 —0.19
1537 0.8535 0.8516 —0.22
1580 0.8457 0.8436 —0.25
1623 0.8380 0.8355 —0.30



Table 2
Calculated and reported data of metals (s and p blocks), and parameters needed for calculations.

Metal T (K) Ty (K) Ym (MJm—#) Ysv (mJm~2) o (k1) oy (k1) —dy/dT —dy/dT Hs (mJm~2) Cm(ms™t) —de/dT{ms™" K™')
(mjm~2K') (mlm—2K')

Cal. Rep. Cal. Rep. =104 = 10% Cal. 1 Cal.ll Reported Cal.1 Calll Cal Rep Cal Rep
Li 453 1615 441 404 618 525 3.0 0.86 011 0.16 015,016 491 513 5276 5128 1.3 1.7
MNa 371 1156 190 197 266 260 3.7 1.20 0.07 0.09 0.09,0.10 216 223 2634 2699 0.96 1.26
K 336 1032 101 110 141 130 4.1 1.34 0.04 0.06 0.07,0.08 114 121 1925 1966 0.79 0.84
Rb 312 961 87 85 122 110 44 1.44 0.04 005 0.06, 007 a9 102 1256 1251 0.55 0.49
Cs 301 944 68 70 95 95 4.6 1.47 0.03 0.04 0.05, 0.06 77 30 986 983 0.44 0.49
Be 1560 2742 1601 1350 2245 2700 089 0.50 0.39 0.28 0.24,029 2209 2038 8635 8825 2.09 1.49
Mg 923 1363 356 557 499 760 1.5 1.02 023 012 0.14,015, 026 568 466 4067 4065 265 1.72
Ca 1115 1757 284 337 398 490 12 0.79 0.13 0.05 0.09,0.10,0.11 429 339 3463 3533 1.54 0.75
Sr 1050 1655 223 286 312 410 1.3 0.84 0.10 0.06 0.08 328 286 2278 2316 1.08 0.83
Ba 1000 2170 225 226 315 370 1.4 0.64 0.06 0.05 0.07 285 275 1772 1751 0.43 0.57
Al 933 2792 085 1070 1381 1160 1.5 0.49 0.15 0.20 0.15,0.16,0.19 1125 1171 3855 3944 0.59 0.48
Ga 303 2477 713 708 1000 - 4.6 0.56 0.09 019 0.09 740 770 1374 1398 0.18 0.26
In 430 2345 569 560 798 - 3.2 0.59 0.09 0.15 0.10 608 633 1268 1297 0.19 0.29
Tl 577 1746 396 459 555 - 24 0.79 0.10 012 0.09,011 454 465 1103 1127 0.27 0.23
Si 1687 3538 876 875 1228 1230 0.82 0.39 0.13 013 0.22,013,0.20,028 1095 1095 5091 4922 0.79 0.89
Ge 1211 3106 571 580 800 1060 1.1 0.44 0.08 0.10 0.08 668 692 2690 2693 0.40 0.28
Sn 505 2875 689 640 966 - 27 0.48 0.08 015 009,013,015 729 764 1356 1383 0.16 0.28
Fb 600 2022 388 457 Dad - 2.3 0.68 0.08 011 0.10,0.11,0.12 436 454 1116 1103 0.22 0.28
Sh 904 1860 388 385 544 - 15 0.74 0.11 0.10 0.11 487 478 1792 1848 0.53 0.23

Bi 545 1837 383 382 537 - 25 0.75 0.08 012 0.06,0.07,0.08 426 448 10559 1082 0.24 0.21
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Fig.2. Calculated (squares)and reported experimental [86] (circles) surface tension
of pure liquid silver, in the range 1235-1550K.



Anisotropy of y

The surface tension of a planar solid depend on the crystallographic orientation.
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Fig. 3.7a,b. Vicinal surface, a section, b (557) or [6(111) x (001)]FCC

Vicinal surface: A surface slightly misaligned from a specific direction.
A vicinal surface shows a periodic succession of terraces and steps.
If [1s the energy per unit length of a step we get

/61 a where n, defines a close-packed surface.
:V(Il) =) (n{] ) + 7 B is the angle between n and ny,

d 15 the mterplanar distance along n,.



The anisotropy of the surface tension is represented via the yplot:
Draw a vector from O in the direction n (defined by its polar and azimuthal angles 6 and o)
with a length equal to the surface tension. }(mn). for a surface plane perpendicular to n.

Example of
a y-plot

The asphericity of the y-plot reflects the anisotropy of »which has minima in the
directions n, corresponding fo close-packed surfaces.

Fig. 2.2. An example of a y-plot

Notice that

Ad/d 1s the density of steps
d yid ¢ has discontinuities at &= 0 and the yplot shows cusps in directions typical of the
most close-packed surfaces. )Bl(ﬂ d
_ 4 _
7(m)=y(ng) + Al %) = a(pla)
d d6/ g-



For &large. the density of steps increases and one has to include the energy of interaction
between steps.

Landau (1965) showed that { &) has a cusp at every angle of a rational Miller index.
The sharpness of the cusp 1s a rapidly decreasing function of index:

_ ™~
Py

dy| 1
\do) n



Effect on the Lattice Parameter

Let us now consider the effects of the increase in the surface-to-volume ratio as
the object size decreases. To do this, we consider first the very simple case of
a liquid sphere of diameter 2R. Due to the curvature of the surface, a pressure
is generated toward the inside of the sphere. The excess pressure AP inside
the sphere, in the purely hydrostatic case, is given by the Laplace equation

APAV = ~dA | (1.5)

where dV' is the volume change corresponding to a change dA in the area of
the droplet. In the case of a sphere, (1.5) takes the form

2y
AP = = - (1.6)



For a spherical solid, the specific surface energy must be replaced by the !
surface stress tensor g;;. To simplify the problem, consider the case of a solid
with simple cubic structure. In this case, - is isotropic and we have

— <«

T

d
gz*‘H—A% : (1.7)

Moreover, we may recall the definition of the compressibility, viz.,

av (1.8)

X:_v.ﬂP’ i

where v is the atomic volume of the solid, which can also be defined as a®,
where a is the lattice parameter. Combining (1.5) and (1.8), We obtain the
relative variation of the lattice parameter:

{4

Aae _ 2.9
a  3'R|

Contraction (%)
)
1

We thus find that there is a contraction of the crystal lattice due to the mg
pressure exerted toward the interior of the particle. This contraction is pro- .

portional to the surface stress and inversely proportional to the particle size. v T []]({;M 20

Fig. 1.2. Contraction of the lattice parameter of copper clusters as a function of the
reciprocal of their diameter. Circles correspond to measurements of electron energy
loss near an ionisation threshold (SEELFS). Taken from De Crescenzi et al. [1]. The
straight line shows measurements of X-ray absorption (EXAFS). Taken from Apai
et al. [2]



From Semi-infinite Crystals to nanostructures
Limited by a plane S with its normal at &=0

Fig. 2.3, Small polar buckling of a planar surface

Now let us study its stability relative to a small polar buckling preserving the average
orientation.
The free energy of the buckled S* surtace 1s

dsS
I?/(é‘)dS' J7(©)

5 cos @




An expansion up to second order in & gives:
d
E, =y(0)S+] @t—’/ ds +
S do =0 The second term vanishes for symmetry reasons and
the energy involved in the deformation is thus the last term

Ly, ef[d'ff + }*(6’)} ds
46"

2,5' g=0
(0)+(d*y/d&*), , <0
;I/ :!/." =)
The surface 1s stable (or metastable)

7(0)+(d*y/d6),_, >0

The surface 1s unstable and will minimize its energy by

developing facets




Finite Crystal or Nanostructure

Limited by a surface S.
The equilibrium shape must minimize the excess surface free energv while preserving the

E, = || y(n)dS
S

Equilibrium (Thermodynamic) Shape of a
Nanocrystal: The Wulff Construction (T=0 K)

Construction of the Wulff equilibrium shape from a y plot
The variational geometric problem was solved by Wulff (1901).
*Draw a radius vector intersecting the polar plot at one point and making a fixed angle with the horizontal

*Construct the plane perpendicular to the vector at the point of intersection.
*Repeat this procedure for all angles.



Fig. 1.6. Polar plot of the surface tension at T =0 (solid curve) and
the Wulff construction of the equilibrium crystal shape (dashed curve)
{Herring, 1951b),

Minimi Assoluti

(i

Shape___—7|

under conditions of thermodynamic equilibrium, the shape of a crystal is
unique. This last result was first obtained by Wulff over a century ago [12].
The solution to this problem consists in minimising the total surface energy
E.. For a liquid the result is immediate: one obtains a sphere. For a crystal,
the specific surface energy v depends on the orientation of the crystal face.
One must therefore minimise

E.=) 7, (1.10)

where the index 7 represents the different facets with areas A; and specific
surface energy -;. Wulff showed that the minimal energy is obtained for a
polyhedron in which the central distances h; to the faces are proportional to
their surface energies ;. This is the well-known Wulff theorem:

L = constant . (1.11)
h

Shape = ~

envelo Thkl

(innelr]pgf ——— = const.

planes PQ thi

length

Figure 1.5. A 2D cut of a y-plot, where the length OP is proportional to y(#), showing the
cusps C and H, and the construction of the planes PQ perpendicular to OP through the points
P. This particular plot leads to the existence of facets and rounded (rough) regions at R. See

text for discussion



orientation (vy-graph). Consider a projection of the y-graph along an axis of sym-
metry of the erystal, as shown in Fig. 1.4. Starting from the center of symmetry O,
draw the radial vectors out to each point of the ~-graph and then draw straight
lines normal to the radial vectors at these points. The inner envelope obtained from
the set of all these normals represents the projection of the equilibrium shape of the
crystal along the chosen crystal axis (a hexagon in the case illustrated). It is clear
from the figure that the facets of the equilibrinm shape correspond to the cusps
of the ~-graph at the minima of the surface energy. When the temperature of the
crystal comes close to the melting temperature, the cusps will be less and less deep
(the anisotropy of the surface energy decreases) and the equilibrium shape tends to
spherical.

At OK, the equilibrium shape contains only a few different faces with the
lowest surface energies. For metals with face centered cubic (fee) structure,
the equilibrium shape is a truncated octahedron exposing the faces (111) and
(100) (see Fig.1.5). For a metal with body centered cubic (bee) structure,
the shape is a dodecahedron. For ionie crystals which have a high degree of
surface energy anisotropy, a single face shows up and the equilibrium shape
of crystals like NaCl or MgO is a cube.

Fig. 1.4. Wulff construction of the equilibrium shape of a crystal from the +-graph
(dashed eurve). O is the center of the crystal. The hexagon represents a projection
of the equilibrium shape of the crystal (Wulff polyhedron). From [11]



Fig. 1.5. Morphology of nanoparticles. (a) Truncated octahedron with 201 atoms.
(b) Cubo-octahedron with 147 atoms. (c¢) Icosahedron with 147 atoms. (d) Trun-
cated decahedron with 146 atoms

Table 1.1. Magic numbers for different clusters: icosahedron, cubo-octahedron,
truncated (Marks) decahedron, and truncated octahedron (Wulff polyhedron for an
fee crystal)

Icosahedron,

cubo-octahedron 13 55 147 309 561 923 1415 2057

Marks decahedron 75 100 146 192 238 247 268 318

Truncated octahedron 38 116 201 225 314 405 807 19280 Fig. 7.1. Upper: High resolution electron microscope image of a cubo-octahedral

cobalt cluster with hexagonal faces, containing roughly 1000 atoms [2]. Lower: Rep-
resentation of the same polyhedron
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Defects introduction

Fig. 1.7. High-resolution electron microscope images of a 2-nm gold cluster compris-
ing 459 atoms. The structure fluctuates during the observation period. The particle
changes between an fec truncated octahedral shape [(e), (f), and (j)], a polyhedron
with fee structure and a twinned structure [(a), (d), and (i)], and a multitwinned
icosahedral structure [(b) and (h)]. Taken from Iijima and Ichihashi [15] with kind
permission of the American Physical Society (€©)1986

For clusters with a number of atoms intermediate between two consecu-
tive closed shells, the shape can be different and it may even oscillate between
shapes with fivefold symmetry (icosahedron, decahedron) and shapes corre-
sponding to an fee structure [14]. In any case, it should be noted that the en-
ergy difference between the various structures for very small clusters is actually
very low, so that in practice, at finite temperatures, a range of shapes is ob-

served. In situ electron microscope observations show that the shape of small
metallic particles fluctuates incessantly between different structures, passing

through disordered structures. Figure 1.7 shows a series of high-resolution




Thermodynamics+Kinetics Effects

Strongly anisotropic case
/ T>0 K

Construction
of the Wulff
equilibrium

=TTV T shape
o \ |V ¢ Equilibrium shapes of Pb crystals at selected 7’s

F 3

Weakly anisotropic case

Fig. 2.5a,b. Construction of the Wullf equi-
librium shape (W) from the y-plot: a strongly :
anisotropic case, b weakly anisotropic case 1 E! Fit

T

Figure 1.7. SEM photographs of the equilibrium shape of Pb crystals in the [011] azimuth,
taken in situ: (a) at 300 °C, (b) at 320 °C, showing large rounded regions at 300 °C, and missing
orientations at 320 °C; (c¢) at 327 °C where Pb is liquid and the drop is spherical (from Métois
& Heyraud 1989, reproduced with permission).



Morphology of Supported Particles

Wulti—Kaichew Theorem

; ﬂ'h!i I

Fig. 1.12. Schematic representation of the equilibrium shape of a supported crystal.
In equilibrium, the erystal interacting with the substrate assumes the form of the
Wulff polyhedron (of the free crystal), truncated at the interface to a height of Ah..
Taken from Henry [20]

Fig. 1.14. Molecular dynamics simulation for Pd/MgO (100). Equilibrium shape
of a 5-nm cluster. Taken from Vervisch et al. [23]



MgO (100)

C

Fig. 1.18. Equilibrium morphology of Pd clusters grown epitaxially on MgO (100).
(a) Side view of a 10-nm cluster in a (110) direction, obtained by TEM on a folded
carbon replica. (b) HRTEM image of a 17-nm Pd particle, visualising {200} atomic
planes separated by 0.2nm. (¢) Equilibrium shape (schematic) of Pd particles with
a size of at least 10 nm, grown epitaxially on MgO (100). The observation direction
is (100). Taken from Graoui et al. [25] with kind permission of Elsevier, and Prévot

et al. [26]
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Inverse Wulff Construction
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Figunz 1.8, Anisotropy of 410 for Pb as a function of temperature, where the: poinis are the
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Fig. 2 HR-TEM images of Au
NCs in Si0O, with the same size
as the NCs on SiO, forming the
three determined groups

Si0,

Embedding: isotropic condition




Fig. 3 HR-TEM images of Au
NCs on SiO» for the three
determined groups ((a) relative
to the group 1, (b) to the group 2
and (c¢) to the group 3)

T
Air 4]

On substrate: non-isotropic
condition




— constant

Fig. 6. Schematic of how the inverse Wulff construction was performed: (r, 8) is the polar plot associated to the (x, y)
Cartesian plot with origin on the Wulff centre of the NC, ¢ is the tangent to the NC surface along the 6; direction, r; the
distance between this tangent and the Wulff centre.
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(Size-dependent) Melting of Nanostructures (Solid-Liquid

Transition)

A size effect, or confinement effect. The nanograin behaves like a kind of
box, within which the property may or may not exist [1]. Below a certain
critical size. characteristics of the property depend on the grain size. This
is the size or confinement effect. The way these characteristics change as
a function of size is often non-monotonic and can exhibit extrema.

A surface or interface effect. In the nanograin, the contribution from layers
close to the surface occupies a more and more important place in the overall
behaviour of the material as the grain size decreases [1]. The surface energy
gradually becomes the dominating contribution to the total energy of the
material. Such a property will evolve monotonically with size and can be
treated within the framework of thermodynamics.




Size Dependence of the Solid—Liquid Transition

From the Macroscopic to the Nanometric

The Macroscopic Solid—Liquid Transition. Generalities

Inp ‘
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L latent heat

1]’) - = -

Liquide T,

Fig. 3.2. Schematic caloric curve for a simple body at constant volume. Low tem-
perature quantum effects are not represented
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Fig. 3.1. Schematic phase diagram of a simple body



Microscopic Theory of the Solid—Liquid Transition

At the present time, there is no satisfactory microscopic theory of the solid—
liquid transition. Although it is not a recent discovery, the Lindemann crite-
rion provides a simple and fairly reliable estimate of the melting temperatures
of monatomic solids such as metals and noble gases. The key idea is that the
amplitude of vibration of atoms in the crystal about their equilibrium position
will increase with temperature. When this amplitude reaches a certain frac-
tion [ of the distance between nearest neighbours in the crystal lattice, the
solid can no longer maintain its crystal structure and it subsequently melts.
Experimentally, it is observed that for all monatomic solids f ~ 0.07 [2].
In order to apply this to nanoparticles, we shall state this criterion in the
form: a monatomic solid melts when the fluctuations in interatomic distances

are_of the order of 14%. Indeed, bond length fluctuations are equal to twice
the vibrational amplitude of atoms located at each end of the bond. These
fluctuations are given by the relative squared deviation ¢ defined by

22N [ \2
Amplitude of atomic vibrations . 2 Z \/(Hj) (rij)

NN i) (3.1

i< ]
where ( ) stands for a time average and r;; is the distance between atoms i

and j. 6 is in fact also an average over all bonds of the relative fluctuation of
each bond.



The solid liquid transition is characterised by two thermodynamic parame-
ters: the transition temperature 7; and the latent heat L. The Lindemann
criterion provides a phenomenological prediction of the melting tempera-
ture, viz.. the solid melts when the relative fluctuation in the interatomic
distances reaches about 14%.

Size Effects on the Solid—Liquid Transition

The distinction between solid and liquid is obvious on our scale, in the sense
that we can see immediately whether a glass of water is frozen or not. However,
if we think about this for a moment, it is not so easy to find measurable criteria
capable of distinguishing between the two states. An elementary school book
gives the following definition: a liquid adopts the shape of the container in
which it is held. But it would be hard to transpose this idea to the nanoscale!



TH(K)

1.3(K)

100K

S(H)

JOMD

Point de tusion de 1'or —e

Wit

Figure 3.3 shows the variation in the temperature of the solid-liquid tran-
sition for egold particles with sizes in the range 2-25nm. The drop in the
melting point is striking, from 1336 K (melting temperature of solid gold) to
around 300 K! As the transition is directly detected by a change in the elec-
tron diffraction pattern, it is not possible to measure the latent heat. This has
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Fig. 3.3. Dependence of the solid-liquid transition temperature of gold on particle
diameter. Taken from [4]. The transition is detected by the disappearance of Bragg
peaks in the electron diffraction pattern. Dots represent experimental values. The
continuous curve is fitted to (3.3) by the least squares method



Classical Models

In order to model a small particle, surface effects cannot be ignored. The first
effect due to the presence of a surface is to add a surface tension term to the
thermodynamic potentials. If this correction is taken into account, assuming
furthermore that the thermodynamic parameters do not depend on the size,
the so-called classical models for the melting of small particles are obtained.

All these theories are based on the Gibbs-Duhem equation, expressing the
chemical potentials of the solid and the liquid, and the Laplace equation for
the surface, taking surface tension into account. A first order expansion gives
an expression of the form

ro\ 12 ron 6 Tm(r) B 20 ;
Ly (r) = eg [(r) — 2 (?) ] 1 — T (o0) = oL (o0)r : (3.2)

where T, (7) is the melting temperature of the particle of radius r, Ty, (o0)
is the melting temperature of the bulk solid, pg is the density of the solid,

L(o0) is the latent heat of fusion of the bulk solid, and « is a function of the
solid-liquid surface tension ~4. the solid—vapour surface tension ~,, and the
liquid—vapour surface tension .
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Surface-area-difference model for
thermodynamic properties of metallic
nanocrystals

W H Qi'?, M P Wang?, M Zhou' and W Y Hu’

The surface-area-difference (SAD) model is developed tor the cohesive
energy of metallic crystals by taking into account surface effects, and has
been extended to predict the thermodynamic properties of metallic
nanoparticles, nanowires and nanofilms with free and non-free surfaces
(embedded in a matrix). It is found that the thermodynamic properties of
metallic nanocrystals depend on the crystal size and the interface coherence,
where the interface coherence determines the variation tendency (increasing
or decreasing), and the size determines the magnitude of the variation. The
present calculated results on the thermodynamic properties of metallic

nanocrystals by the SAD model are consistent with the corresponding
experimental values.



To give more general formulae of the SAD model. we
assume that the crystal is embedded in a matrix. If the crystal

. . 3
consists of n atoms, the total surface arca of n atomsisn-4mr-,

and the corresponding surface energy is n - dr? . Yo, Where

r is the atom radius and yy is the surface energy of the crystal
per unit area at 0 K. If each interface atom contributes half its
surface to the interface area of the crystal, the interface energy
of thecrystalis N .27rr?.y:. where N is the number of interface
atoms and y; is the interface energy per unit area at O K. Then,
the increased surface energy after dividing the crystal into
isolated atoms, i.e. the cohesive energy of the crystal, can be

written as

E,=n- 4?:;'2]43 — N - 2::;'2}—'-[

N
:n-41‘rr2-m(l——-}?‘), (1)
2n
where p = 9/w. and y; can be computed using the

surface energy of the crystal and that of the matrix [5]. By
considering the coherence (the coherence is used to describe
the lattice matching of the interface atoms between the matrix
and the nanocrystals), we have 4, = Y — gvm. where wy
denotes the surface energy of the matrix per unit area at O K,
and g denotes the coherence between the crystal and the matrix.
g = 1 is the coherent interface, g = 0.5 the semi-coherent
interface, and ¢ = 0 is the non-coherent interface. The case of
g = 0 is the same as that of the crystal with the free surface.

The cohesive energy per atomis £ = E, /n, i.e.

N
E:Eh(l__'P): (2)
2n

where Ep(= 4mr? - ) is the cohesive energy per atom of the
crystal neglecting the boundary conditions. In other words,
we have E = E, by ignoring the interface effect. E can
be regarded as the interface dependent cohesive energy. Since
there is no size limit in its expression, equation (2) can be



Crystal structure

The number of atoms per unit volume is denoted as py,
and the number of atoms per unit area in the plane (hkl) is
denoted as ps. For a layer of a crystal plane, the number of
atoms per unit area equals that of the volume dj; - 1, where dj;
is the interplanar distance of (hkl), and djy; can be computed
using the lattice constants. For example, for the cubic crystal,
we have djy = a/vh? +k? + 12 (a is the lattice parameter).
Then, we have

ps = pv - dp- (3)

The number of total atoms is py - V', and the number of interface
atoms is ) . psk - Sk, where psg is the number of atoms per
unit area in the plane K., and Si is the area of the plane K.
Sigma denotes the sum of the contributions of all interface
atoms in different planes. Then, the size term in equation (2)
can be written as

N ) xpsk - Sk

n pv -V @



Application of the SAD model to nanocrystals

We assume that all the interfaces of a spherical nanopar-
ticle have the same plane index, and then the term
p - > xpsk-Sk/(2pv-V) is reduced to ps-p-mD?/
(2-py-mwD3/6),ie. (ps/pv) - 3p/D, where D is the diame-
ter of the nanoparticle. Taking equation (3) into consideration,

we can get the cohesive energy of the spherical nanoparticle
(Ep), 1.e.

(6)

3Ipd
EP:Eh(]_ P mu)_

Cohesive energy



Equation (3) can also be used to account for the
cohesive energy of nanowires and nanofilms embedded
in a matrix. Since a nanowire and a nanofilm can be
recarded as two limits of a pancake-like nanoparticle. the
following discussion is based on a pancake-like nanoparticle,
where [ and & denote its radius and height, respectively. If
[ <« h, the pancake-like nanoparticle is a nanowire, and
[ > h is a nanofilm. For simplicity, we still assume
that all the interfaces have identical plane indices. For
a more rigorous calculation, each plane index should be
determined carefully. The volume and the interface area
of the pancake-like nanoparticle are w!/*h and 2wlh + 2mwi?,
respectively. The term p - > . psk - Sk /(2pv - V) can be
writtenas ps - p - (2wlh +2w1%) /(2 - py - wl?h).i.e. (ps/py)-
p-1(2/w)+ (1/h)], where w (=2I) is the diameter. Then, the
corresponding cohesive energy can be written as

2 1
E = E, [1 — pdpy (; + E)] - (8)

For a nanowire, we have w <« h. Then, the cohesive energy
(Ew) is

Nanowire: w=raggio Ew = Ep (1 _ ZPd““) _ (9)
nanometrico w

Correspondingly, for a nanofilm, we have w > h. The
cohesive energy (Eg) 18

d
Ep — Eh(] _? ”“). (10)

h

Nanofilm: h=spessore nanometrico

This result is the same as that given by the liquid drop model
[5]. Equations (7). (9) and (10) can be combined into a unified
formula

E; = Ev(1 — pdpu X ), (12)

where j(= 0, 1. 2) is the low dimension of nanocrystals: j = 0
denotes nanoparticles, j = 1 nanowires and j = 2 nanofilms.
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Figure 1. Cohesive energy of W nanocrystals with free surface. The

solid lines are calculated by equation (12), where p = 1,
dipp = 0.31650nm [18], E, = 8.54eV [1] and @ = 1.245. The
symbols ‘W denote the experimental values of W nanoparticles [2].



Melting temperature and superheating

Rose et al [19, 20] proposed a universal model for solids from
the binding theory of solids. Combining their theory with
the Debye model, they theoretically derived the well-known
empirical relation between the melting temperature and the
cohesive energy for pure metals:

0.032

T . =
mb RB

E,, (13)

where T, 15 the melting temperature of bulk pure metals and
kg is the Boltzmann’s constant. Similar to the cohesive energy,
the melting temperature is also a parameter to describe the
strength of metallic bonds. Therefore, equation (13) can be
regarded as the mathematical conversion of both parameters.
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Figure 4. Melting temperature of In nanocrystals with free surface.
The solid lines are computed by equation (14), where p = 1,

dipo = 045979 nm [18], Ty = 429.8 K [21] and @ = 1.245. The
symbols ‘@’ [10], ‘0" [11] and ‘W [12] denote the corresponding
experimental values of nanofilms, nanowires and nanoparticles.




Melting entropy and melting enthalpy

Ubbelohde [22]. Regel and Glazov [23] have shown that the
melting entropy (Syp) of a metallic crystal 1s mainly vibration
entropy (Sy,). Then, the melting entropy of metallic crystals

can be written as
3 Tmb
Sk = —kgr In , 15
mb = Sk ( C ) (15)

where C is a constant. By replacing T, by T;. we can obtain
the size dependent melting entropy of nanoparticles, nanowires
and nanofilms. The expressions are simplified as

Free surface |
G

5

20 20

=16
=12 T
< =
3 £
E -8 =
] E
= T
E
W

oL

20 40 60 80 100
D (nm)

Figure 6. Melting entropy and melting enthalpy of Sn nanocrystals
with free surface. The solid lines denote the results calculated by
equations (16) and (17), respectively, where djopo = 0.648 92 nm
[18]. Hyp = 7.08 Jmol~' K—! [24], S, = 14.02 [24]. « = 1.245
and p = 1. The symbols ‘W and ‘@ denote the corresponding
experimental values [25].



Embedded Nanostructures
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Figure 3. Cohesive energy of W nanocrystals embedded in a Re
matrix. The solid lines are computed by equation (12), where

dioo = 0.31650nm [18], E, = 8.54eV [1] and @ = 1.245. The
surface energies of W and Re are 2753 mJ m~? and 3100 mJ m— [5],
respectively, and p = 0.126.
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Figure 5. Melting temperature of Pb nanocrystals embedded in an
Al matrix. The solid lines are theoretical results given by

equation (14), where d,pp = 0.49502nm [18], T, = 600.6 K [21]
and @ = 1.245. The surface energies of Pb and Al are 544 mJ m >
and 1032 mJ m~? [5], respectively. and p = 0.897. The symbols
‘A’ [13] and ‘W [14] denote the corresponding experimental values.
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Figure 7. Melting entropy and melting enthalpy of In nanocrystals
embedded in Al matrix. The solid lines denote the results calculated
by equations (16) and (17), respectively, where dp; = 0.459 79 nm
[18], Hyp = 3.27Jmol~' K~' [24], S, = 7.60 [24] and & = 1.245.
The surface energies of In and Al are 638 mIm~ and 1032 mJ m—
[5]. respectively, and p = 0.617. The symbols ‘A" and “®” denote
the corresponding experimental values [25].





