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Nanostructures on substrates and in matrices
(Control of size and number of nanoparticles on substrates
and In matrices: nucleation and growth thermodynamics and
Kinetics (basic concepts and experimental data); Ripening
and Coalescence: basic rate equations and experimental
data; Typical activation energies and diffusion coefficients)
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Controlling the self-organization mechanisms

O The Ripening and Coalescence processes are the main growth mechanisms for metal
NPs leading to morphological and structural evolution of the NPs.

O The control of the NPs Ripening and Coalescence processes can lead to NPs with
desired size, morphology and structure

Ripening I Coalescence

I
Driving Force: Minimization of the Total Surface Energy of the System

K. -N. Tu, J. W. Mayer, L. C. Feldman, «Electronic Thin Fils Science» , MacMilian 1992



The Ripening process: basics

The ripening process involves an atomic diffusion from smaller particles to larger
particles. This is due to the Gibbs-Thompson effect, i. e. the atomic pressure vapor is

higher around smaller particles. So, the smaller particles shrink and dissolve (in
atomic form) and these atoms are captured by larger particles placed within the
atomic diffusion length

0-0q RisRy—e>c, O () Gibbs-Thompson effect

C \ \
SR o TR p o expl2ys/KTR]

Diffusion Length
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The Coalescence process: basics

The coalescence process involves the touching (contact) of two or more particles,
deforming their surfaces, to form a particle having volume the sum of the volumes of
the touching particles but surface area lower than the sum of the surface areas of the

touching particles.

3D NPs on a 2D surface

R — Ry x {exp|—E,/KkT]|}t

S. Arcidiacono et al., Int. J. Multiphase Flow 30 (2004) 979.

A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, Springer-Verlag,
Berlin Heidelberg GmbH (2003).

A. Steyer et al., Phys. Rev. A 44 (1991) 8271

P Meakin Ren Proa Phvs 55 157 (1997?)




Analysys of the Ripening process of Au
nanoparticles on surface
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Diffusion limited ripening: solution of the rate equation (kinetic equation)
n n __
R"(t) - R = Kt

(2D/2D case) for the growth of two-dimensional
(2D) particles on a surface (2D);

-
|
N

n p— (3D/3D case) for the growth of the three-dimensional
(3D) particles embedded in a bulk matrix (3D);
N = 4 (3D/2D case) for the growth of three-dimensional

(3D) particles on a surface (2D).

i el B
RI(D-Ry =Kt = 25k In() R

I. M. Lifshitz et al. J. Phys. Chem. Solids 19, 35 (1961).
K. -N. Tu, J. W. Mayer, L. C. Feldman, «Electronic Thin Fils Science» , MacMilian 1992
M. Zinke-Allmang et al., Surf. Sci. Rep. 16, 377 (1992).



F. Ruffino et al. J. Appl. Phys. 101,
064306 (2007); Superlattices and Growth
Microstructures 44, 588 (2008)

RY(t) - RY = Kt
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L BESZEDA! ™ Surface Ostwald-ripening and evaporation

E.G. 'I!:'nr'li]'l"«ilT[EF.'.-]"v'[EZI"j"r’s.1

£.W. IMRE3 of gold beaded films on sapphire

! Department of Solid State Physics, University of Debrecen, 4010 Debrecen, Hungary
2L2MP. UMR CNRS 6137, Université Paul Cézanne Aix-Marseille 111, Marseille, France
3 Institut fiir Materialphysik, Westfilische Wilhelms-Universitit, 48149 Miinster, Germany

Received: 3 November 2004 /Accepted: 2 March 2005
Published online: 10 May 2005 « © Springer-Verlag 2005

ABSTRACT The kinetics of morphological evolutions of gold
nanoparticles on alumina, resulting from evaporation and sur-
face Ostwald-ripening coarsening, have been investigated by
means of Auger electron spectroscopy. When the fraction of
the covered area is small, the kinetics of evaporation can be
related to the desorption of adatoms. In the temperature range
943-1043 K we obtained the evaporation flux J(m_zs_') =
48 x 1027exp[— 196 £9 (kJ/mol)/RT]. The experimental acti-
vation energy of evaporation of gold from a sapphire surface,
Qevap = 1969 KJ/mol, is lower than the tabulated value of en-
thalpy of sublimation of gold, A Hgp = 368 kJ/mol. At lower
temperatures, in the range 623-778 K, Ostwald-ripening ex-
periments, carried out on nanosized clusters, yield the mass
transfer surface diffusion coefficients of gold on alumina,
Dg(m?/s) = 2.6 x 10~ 4exp[—58 £9 (kJ/mol)/RT]. These re-
sults, providing information on the evolution of granular gold
films such as those used in catalysts or sensors, are compared to
previous data on similar systems.

E, (Au on Al,0,)=0.6 eV
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Adsorption and diffusion of the Rh and Au adatom on graphene
moiré/Ru(0001)

Lymarie Semidey-Flecha,! Dieh Teng,? Bradley F. Habenicht,! David S. Sholl,?

and Ye Xu'-@

! Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37831, USA

2School of Chemical & Biomolecular Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332, USA

(Received 29 January 2013; accepted 19 April 2013; published online 14 May 2013)

Detailed density functional theory calculations have been performed to investigate the adsorp-
tion and diffusion of the Rh and Au adatom on the graphene moiré superstructure on Ru(000T).
The adsorption energies of each adatom in all of the non-equivalent C-top and Cg ring center
sites on the graphene moiré have been calculated. The resulting potential energy surfaces encom-
pass the entire graphene moiré€ unit cell and shows that the adsorption of both Rh; and Au; is
most stable in the fcc region on the graphene moiré. The minimum-energy diffusion path be-
tween adjacent moiré cells is identified to run mostly directly between the fcc and hep regions
for Au;. but deviates toward the mound region for Rh;. The global diffusion barrier is esti-
mated to be 0.53 eV for Rh; and 0.71 eV for Au;. corresponding to a hopping rate between
adjacent moiré cells of ~10° s~! and ~1 s~! at 298 K, respectively. The consequences of dif-
ferent hopping rates to cluster nucleation have been explored by performing Monte Carlo-based
statistical analysis, which suggests that diffusing species other than adatoms need to be taken
into account to develop an accurate description of cluster nucleation and growth on this surface.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803893]

E, (Au on graphene/Ru(0001))=0.71 eV



Analysys of the Coalescence process of Au
nanoparticles on surface




Samples preparation and microscopic analyses

Au NPs in aqueous solution, reactant free. PBS Solution
stabilized (by Sigma-Aldrich) drnp rich

in Au NPs

Drop casting
deposition

No (x 10° 38 | 78' 35 1180 |
NPs/mL) _ "3 "1 _L_1

Thermal Processes
(573-1173 K, 900-3600 s)
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F. Ruffino et al. Physica
E 74, 388 (2015)

(¢)

78.5 nm, 773 K-1h

53.2 nm, 973 K-1h

53.2 nm, 573 K-1h

Vior=VitV,
Stor<S;tS,

The coalescence process involves
the touching (contact) of single
particles, deforming their surfaces
(neck formation), to form a particle
having volume the sum of the
volumes but surface area lower
than the sum of the surface areas.



Bimodal size distributions
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Coalescence: solution of the rate equation (kinetic equation)
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On the coalescence of gold nanoparticles ™

® ® B ® * #* =
S. Arcidiacono ?, N.R. Bieri #, D. Poulikakos **, C.P. Grigoropoulos °

The energy change of the system can be written as

dE _ d(Ebuik + Esurface) - dr da -
dr de = NGy ar Tova T 0 2)

where C, is the constant-volume heat capacity, g, is the solid—vapor surface tension, T and a are f
the temperature and the surface of the two coalescing particles at time . I

The surface area reduction by sintering can be described by the linear law of Koch and I'\ |

Friedlander (1990): \ /

da 1 I
a——;(ﬂ—as) (3)

where a; is the surface area of the final sphere (assumed in the analytical solution) and t the
characteristic sintering time that will be defined later in this section. The relation above was

Finally, the derivative of the particle temperature can be expressed as

dr o, da L,
dt  2NC, dt >

“2

Figure 7.2: The geometry of two sintering nanoparticles. The shaded area is the neck

region



The mitial growth stage of sintering 1s best described by the neck growth in terms
of the neck radius. Frenkel [128] and Kuczinski [129] pioneered studies i this direction.
For two tangent spherical particles with the equal size, the neck growth equation resulted

by any individual mass transport mechanism 1s given as

Free-standing nanoparticles g

. . X B(I)
Evoluzione temporale di x,, | =t (6.24)
Non restituisce evoluzione temporale di R R, R;

where B(7) 1s a term depending on the sintering temperature and relevant material

properties and 7 1s the time. The exponent /» and » depend on the specific dominant mass

transport mechanism. The characteristic coalescence time zr1s defined from Eq. (6.24) as

the time at which the neck radius to the Particle initial radius ratio reaches 1 or 0.83

(corresponding to the largest possible neck to radius ratio of two sintering spheres). For



the surface diffusion, Nichols and Mullins [130][131] showed that

5Dy & |
B(T)=2 ??a m=4,n=6, 7, =R}/ B(T) (6.25)

B

where D: 1s the surface diffusion coefficient and o 1s the atomic size. For thﬂaiu

boundary diffusion, Coblentz ef al. [132] gave the expression

3
_ 192D,by 6
kT

B

B(T) cm=4.n=6. r.=R,/B(T) (6.26)

f

where Dy 1s the grain boundary diffusion coefficient and 2 1s the width of the grain

boundary.



The diffusion coefficient is assumed to follow the Boltzmann—Arrhenius dependency:
D = Dyexp(—E,/RT)

where D, 1s the pre-exponential diffusion coefficient and E, the activation energy.

Assuming grain boundary diffusion as the driving phenomenon (Nakaso et al., 2002), the
proper pre-exponential factor and the activation energy can be calculated with the empirical
relationship deduced from experimental data of bulk material valid for fcc crystal structures

(Gjostein, 1972):
Dy, = 0.3 cm?/s (8)
E,=47.5-Ty J/mol (9)

where Ty 1s the bulk melting temperature.
The surface tension is calculated using the relation of Murr (1975) for pure fcc metals:

Gow = 1.2(01 )y, + 0.45(Ty — T) (10)

where (o), 1s the surface tension of liquid bulk gold at the melting point.




Table 4.1. Coalescence time for two silver particles with R = 10 nm

Temperature  Volume diffusion  Grain boundary diffusion

T [K] teo teo

298 D vears
373 15 years 25 days
473 21 min 1 days
573 0.3 s 4 min
673 0.9 ms 20 s

Activation energy volume diffusion<Activation energy grain boundary diffusion
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Growth of droplets on a substrate by diffusion and coalescence

A. Steyer, P. Guenoun, and D. Beysens
Service de Physique du Solide et de Resonance Magnetique, F-91191 Gif-sur-Yvette CEDEX, France

C. M. Knobler
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90024
(Received 5 March 1991)

This paper is devoted to the theoretical and numerical
investigation of growth phenomena on a substrate in the
case where diffusion and coalescence play the major roles.
Such phenomena, where clusters of given dimensionality
(D) nucleate and develop on a substrate of lower dimen-
sionality (d) are found in many areas of fundamental and
applied sciences (heterogeneous nucleation, thin-film
growth, heat and mass transfer) and daily occurrences,
like the formation of dew. Understanding the underlying

At this stage, the growth of the droplets leads to a con-
tinuous increase in surface coverage. When the interac-
tions by coalescence become important, growth is ac-

celerated, and the average droplet radius behaves as

{R }__‘Il.r"liﬂ—d} .

(2)



Study of the coalescence process of SiO, supported Au NPs

Data analysis: size-dependent activation enerqy
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Study of the coalescence process of SiO, supported Au NPs

Data analysis: considerations

The values estimated by us in the 0.21-0.36 eV are
compatible, mainly, with Au self-diffusion involved in the
NPs coalescence process

d EA~0.4 eV is characteristic of Au atoms surface self-diffusion
(H. Gobel, P. von Blanckenhagen, Surf. Sci. 331-333 (part B) (1995) 885).

d E,~1 eV is characterit * K‘/\ f-diffusion

(T. S. Lin, Y. W. Chung, ! ‘ uctures 4 (1988) 709).

d E,=0.7 eV is characte undary
(S. Arcidiacono et al., Int )04) 979).



Study of the coalescence process of SiO, supported Au NPs

Considerations on the size-dependent activation enerqy

i S A, , .
3 AR, =1 ¢! M. José-Yacaman et al., J. Phys.

SRy “! Chem. B 109, 9703 (2005):
i

In-situ (TEM) observation of
, » the thermal induced
M ; ~i¥ coalescence of two Au NPs. (a,
25 : sezsun b) Neck formation at the
contacting surfaces. (c, d)
< Crystal planes alignment. (d)
Plane defects formation in the
. new stressed structure. (f) The
newly formed structure is now
relaxed.

AN I RN e o A o] 1 PN '?'?;::;‘z;in"m A o

“The coalescence process begins with NPs contact, followed by the alignment of the coalescing
planes at the interface between the nanoparticles; the liguidlike mobility of the nanoparticle
surface layers is essential to achieve this. When a small particle coalesces with a larger one,

the smaller one rotates to orient its planes to those of the larger one”.

NPs surface melting as essential condition to coalescence




Qur data confirm the finding of José-
Yacaman et al.: essential role of a high-
mobility (liquid-like behavior) of the NP

surface atoms for the coalescence process.

<€ >
2nm 20 nm
TH(K)
Size-dependent . ot d s de o
activation energy for

the coalescence .'

ProCess ' I

-"”'”“ 5:] ]['m I;‘” _’llk) D(A)
30 nm 100 nm Fig. 3.3. Dependence of the solid-liquid transition temperature of gold on particle

diameter. Taken from [4]. The transition is detected by the disappearance of Bragg
peaks in the electron diffraction pattern. Dots represent experimental values. The
continuous curve is fitted to (3.3) by the least squares method



A case In which both nanoparticles ripening
and coalescence act




Electron beam irradiation (in-situ by TEM),
200 keV, 1.8x102% +1.62x10* C/cm?
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More In depth: rate equations for ripening
and for coalescence




Rate equation

JOURNAL OF MATERIALS SCIENCE 37 (2002)2171-2202

Review

Progress in Ostwald ripening theories and their
applications to nickel-base superalloys

Part|: Ostwald ripening theories

A. BALDAN

Department of Metallurgical and Materials Engineering,
Mersin University, Ciftlikkoy, Mersin, Turkey

E-mail: abaldan@mersin.edu.tr

A major advance in the theory of Ostwald ripening
was made in a paper by Lifshitz and Slyozof [5, 6] and
followed by a related paper by Wagner [7] (LSW). In
contrast to previous theories, The LSW developed a
method for treating an ensemble of dilute coarsening
particles, and were able to make quantitative predic-
tions on the long-time behavior of coarsening systems
without recourse to a numerical solution of the rele-
vant equations. The limitation of infinite dilution al-



Basic equations

Thermodynamic driving force
for ripening

Competitive growth takes place among precipitates
when particles with various sizes are dispersed in a
matrix. The growth originates from the concentration
gradients around the particles caused by the thermody-
namic demand, i.e. the Gibbs-Thomson equation: the
concentration at the surface of particles in equilibrium
with larger particles is lower than that with smaller par-
ticles. Solute atoms flow through the concentration gra-
dients both from the surface of the smaller particles to
matrix and from the matrix to the surface of larger parti-
cles. During this process, average radius of the particles
increases. The phenomena can take place in any stage
of precipitation.

Any system of disperse particles statistically dis-
tributed in a medium and possessing certain solubil-
ity in it will be thermodynamically unstable due to a
large interface area. Its decrease in approaching equi-
librium is accompanied by particle coarsening whose
solubility depends on their radii and is described by the
well known Gibbs-Thomson relation

29Q 1 29Q 1

T 1 ReT r

where C, is the solute concentration at a plane interface
in the matrix in equilibrium with particle of infinite ra-
dius, C, is the solubility at the surface of a spherical
particle with radius r, y is the specific interfacial en-
ergy of the matrix-precipitate particle boundary, €2 is
the mean atomic (or molar) volume of the particle, Rp
is the Universal gas constant [8.314 x 103 J /(K. kmol)]
and T is the absolute temperature. The difference be-
tween C, and C, induces a diffusive flux of atoms from
the smaller to the larger particles. Thus the average par-
ticle radius increases and the total number of particles
decreases with time, as well as the total free surface
enthalpy of the system.



The kinetic equation

The Kinetic equation is usually the difficult to determine
for it is based upon a solution to a potentially difficult
free-boundary problem. The concentration field equa-
tion describing mass flow, which must be solved in both
phases, is

VC =0 (5)



The continuity equation

It particles flow through particle size space in a contin-
uous manner, the time rate of change of the number of
particles per unit volume of size Rto R +dR, f(R, 1),
is given [ 19] by the flowing continuity equation

of | d(fdRjan) _

9
ot IR &)

where d R /df is the growth or shirinkage rate of a parti-
cle as given by the Kinetic equation, and 7 is time. The



The mass conservation equation

The mass conservation equation implies that if the
mean-field condition is a function of time during ripen-
ing, then the mole fraction of the second phase particle
( must also be a function of time. The mole fraction., is
related to the particle size distribution function f(R, 1)
as

Qsz RPf(R,1)dR (11)
0

where G 1S a geometrical factor that depends on the
particle morphology.



The major advance 1 the theory of ripening was made m a paper by Lifshitz and Slyozov
[3.15] and followed by a related paper by Wagner [3.16]. In contrast to previous theories, LSW
developed a method for treating an ensemble of dilute coarsening particles, and were able to make
quantitative predictions on the long-time behavior of coarsening systems without recourse to a
numerical solution of the relevant equations. The LSW theory 1s valid when the volume fraction of
dispersed phase 1s sufficiently small. When volume fraction of dispersed phase becomes larger. the
factor of the growth rate becomes large and this volume effect will accelerate Ostwald ripening.
Because we will use the LSW theory to model the growth rate of the particles, it 1s assumed that
volume fraction of the dispersed phase is sufficiently small. The diffusion equation in terms of the

concentration C(r,7) of the dispersed phase component in the diffusive medium at a give time ¢

and in space at coordinate » can be written:

5C5f‘~f) — DV2C(F.0)+F (3.10)

or

where D denotes the diffusion coefficient and F the amount of component consumed by grain
growth or evolved by dissolution per unit volume and time:

F=-{¥
V

Jf(R)(jf—}fdeR (3.11)

! A

with f(R) the size distribution function [3.13]. R the radmus of a particle, v the molar volume of

the dispersed phase. Now, it i1s necessary to consider the Gibbs-Thompson effect described by the
Gibbs-Thompson equation (capillary approximation):



Cr=0C,e

2R1 2,0 1 R
kzT R ~C | / C€|:l C':| (312)

where C, 1s the solute concentration at a plane mterface in the matrix m equilibrrum with particle

of infinite radius, Cp 1s the solubility at the surface of a spherical particle with radius R, y 1s the

specific interfacial energy of the matrix-precipitate particle boundary, € 1s the mean atomic
volume of the particle, 7 the absolute temperature and R~ =2)Q/ kg7 1s usually referred as the

capillary length. The difference between Cjp and C, induces a diffusive flux of atoms from the

smaller to the larger particles. Thus, the average particle radius increases and the total number of
particles decreases with time, as well as the total free surface enthalpy of the system. This equation
express the thermodynamic driving force for ripening.

Lifshitz and Slyozov represented the growth rate of a particle due to ripening as

dR __(CG.n-C
AR _p{CE0-Cp) (3.13).
dt R

This growth rate results from the stationary solution of the diffusion field around a single spherical
particle with radius R . Such an equation 1s based on the critical assumption that the particle
coarsening rate 1s independent of its swrrounding. This is tantamount to a “mean field” description



of the particle’s growth rate. The eqs. (3.10)-(3.13) are the basis for Ostwald ripening process of
particles dispersed m a matrix. In particular, basimng on such equations it 1s possible to determine
the temporary evolution of the average radius R(7) of the particles in stationary state (1. e. for

sufficiently high time) as [3.9]:

R™(1)-R! =K't (3.14)

with R, the radius of the particle at time 7 =0, and K " an appropriate constant depending on the

diffusion coefficient [3.17]. In particular, the fundamental formulations of the ripening theory
differ themselves by the value of the exponent » [3.9]:
- n=2 (2D/2D case) for the growth of two-dimensional (2D) particles on a surface (2D);
- n =23 (3D/3D case) for the growth of the three-dimensional (3D) particles embedded in a
bulk matrix (3D);
- n=4 (3D/2D case) for the growth of three-dimensional (3D) particles on a surface (2D).



The ripening mechanism 1s a process mediated by the diffusion of clusters component from the

clusters with R < R" to the clusters with R > R . About the atomic diffusion process (in the bulk
or on a surface), we recall simply that it is described by a diffusion coefficient D . The Fick’s first
law relate the atomic flux J to the atomic gradient concentration (the driving force of the

process). In one dimension: J =-D(8C / éx).

The Fick’s second law (continuity equation) describe the temporal variation of atomic
. . . ~2 - . . . . .

concentration. In one dimension: (8C/ét)= D(@' C/éx? ) The diffusion coefficient, in general, is

found to have an activated Arthenius form [3.5]:

£
D = D,exp| ——-
kgT

(3.15)

y

with £, the characteristic activation energy of the diffusion process.



2) The coalescence process: guantitative details
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Figure 1. Schematic of sintering of a pair of spherical particles. r is the particle radius, L is the center-to-center distance, x is the neck radius
and v is the dihedral angle.



To understand the sintering process, we consider that,
during the early stages of sintering, neck growth occurs to
reduce the chemical potential at the particle contact points
(figure 1). Possible mass transport mechanisms for neck
growth include grain boundary diffusion, surface diffusion
and lattice diffusion. as well as deformation. We focus
on the diffusion mechanisms as they likely dominate the
sintering behavior of nanoparticles. Indeed. it is unlikely that . o+ vy oo for the variables in equations (1) and (2). D,. D,
dislocation-driven plastic flow would contribute significantly  and D,, are the diffusion coefficients for surface, lattice and grain
to neck growth in face centered cubic (fcc) nanoparticles, given  boundary diffusion. respectively. 8, and &y, are the thicknesses for

the large stresses required for plastic flow in a nanoparticulate surface and grain boundary, respectively. y; is the surface energy. £2
= is the atomic volume. From [11].
system [10].

i : i . ) Mechanism m n F
The ratio of neck size, x to particle radius, r during the
initial s S i i ' - i ' S articles Surface diffusion 7 4 (LDErD
initial stages of sintering between two uniformly sized particles KT
is given by [5, 6, 11] Grain boundary diffusion 6 4 w
y Lattice diffusion from the surface 4 3 %;ﬁﬁ
m
i _ ( E ) (1) Lattice diffusion from the grain boundary 5 3 %?L.]’*—Q
r rt

and the densification (characterized by the shrinkage between
the particles’ centers) is given by

AL —Fi\*m
—— (2)

L 2!’?‘! f‘"

where 1 is the sintering time, L is the center-to-center distance
between particles and F,m, and n depend on the dominant
sintering mechanism (see table 1). Note that AL/L = 0 when
surface diffusion is dominant since this is a non-densifying
diffusion mechanism.



Sintering /coalescence process 1s accepted as a thermal treatment for bonding
particles into a coherent, predominantly solid structure via mass transport events that
often occur on the atomic scale [125]. It 1s traditionally used for manufacturing ceramic

1s still poorly understood. According to the continuum theory, the driving force 1s
believed to be the excess surface free energy in the system. While various mass transport
models have been proposed to describe the sintering process for microparticles [125],
high sitering rates observed at low temperatures for nanoparticles cannot be explained
by any diffusion-based model. Due to the high surface-to-volume ratio, the nanoparticle
temperature can be significantly altered by surface energy release, which turns out to
accelerate the sintering/coalescence process. Besides this, the melting temperature of
nanoparticles 1s well known to be size-dependent, leading to a complex
melting/solidification process when coalescence of nanoparticles 1s initiated at the

temperature sliechtlv below a nanoparticle meltine temperature.



7.2.1 Mass transport mechanism

The driving force for sintering/coalescence process is believed to be the excess
surface free energy in the system. Local curvature changes during the coalescence
process create the corresponding gradients in vapor pressure, chemical potential or
surface stress over neighboring surfaces, and promote the motion of atoms and vacancies
[125]. Various mass transport models are proposed to describe ways of material
migration in the sintering particles. In the solid-state, these include surface diffusion (SF),
grain boundary diffusion (GBD), evaporation & condensation (EC), and volume diffusion
from the surface of the particle (VDS) and from the interior of the particle (VDV). In the
liquid or amorphous material, viscous flow (VF) 1s often considered as the dominant
mechanism. These models have been extensively reviewed 1n the dissertation of Lunden

[127]. and are illustrated in Figure 7.1 together with their transport paths.
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Figure 7.1: Six mass transfer mechanisms and their transport paths



Generally speaking, the material migration mechanisms during the sintering
process can be grouped into two categories. In the EC, SD and VDS models, material 1s
transported from the particle surface toward the neck, simply filling the area between
particles. However, the particle mass centers remain at the same location. These
mechanisms are called adhesion mechanisms. On the other hand. in the GBD, VDV and
VF models, materials are moved from the region between the particles toward the neck,

causing the particle mass centers approach one another. These mechanisms are called

densification mechanisms.



7.2.2 Morphology evolution of sintering particles

The morphology evolution of two sintering particles can be divided into two
stages. In the mitial growth stage, two spherical particles approach each other driven by
various gradients between them and the neck region 1s created. This process 1s shown in

Figure 7.2, where x;,1s the neck radius and Ry 1s the initial particle radius. A larger

spheroidal particle 1s formed in the end. In the second coalescence stage, the non-

spherical particle gradually changes mto a spherical particle.
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Figure 7.2: The geometry of two sintering nanoparticles. The shaded area 1s the neck

region



The mitial growth stage of sintering 1s best described by the neck growth in terms
of the neck radius. Frenkel [128] and Kuczinski [129] pioneered studies i this direction.
For two tangent spherical particles with the equal size, the neck growth equation resulted

by any individual mass transport mechanism 1s given as

K

x ] _B0), (6.24)

R

where B(7) 1s a term depending on the sintering temperature and relevant material

properties and 7 1s the time. The exponent /» and » depend on the specific dominant mass

transport mechanism. The characteristic coalescence time zr1s defined from Eq. (6.24) as
the time at which the neck radius to the particle initial radius ratio reaches 1 or 0.83

(corresponding to the largest possible neck to radius ratio of two sintering spheres). For



the surface diffusion, Nichols and Mullins [130][131] showed that

25Dy 5

B(T)= .m=4:n=6; 7,=R;/B(T)
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where D; 1s the surface diffusion coefficient and o 1s the atomic size. For the grain

boundary diffusion, Coblentz er al. [132] gave the expression

3
_ 192D, by 6
k;T

B

B(T) cm=4n=6, 7, = R; / B(T) (6.26)

where Dy 1s the grain boundary diffusion coefficient and 5 1s the width of the grain

boundary. While for the viscous flow, Frenkel [128] developed a simple model as

3y ,
B(T)= ’7;3; m=1:n=2; r,=R,/B(T) (6.27)

where # 1s the viscosity.





