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Substrate-supported
Nanoporous Au Film

Characteristics

v Three-Dimensional Structure
v" Localized Surface Plasmon
v High Surface Area (~10 m?/q)
v" Electrochemical Properties

v’ Size-Dependent Properties
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Nanoporous Au

State of Art: Nanoporous Au Leafs and Films-Applications
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Localized surface plasmon resonance of hanoporous gold
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1) Nanoporous Au
Fabrication by Dealloying a Au-X Bimetallic Alloy

Nanoporous Au can be easily prepared from Au-X alloys of suitable
composition by using a simple dealloying process of the X less noble elements
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Dealloying
Alloy Film in HNO,
Requirements
v Au-X: HOMOGENEOUS binary solid solution AuAg, AuCu

v High difference in Au/X-ion electrode potential
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1) Nanoporous Au
Perspectives: Porous Au Nanostructures

Porous Au nanostructures possess a much higher surface-to-volume ratio than bulk
nanoporous Au leafs and films .
They are expected to broaden the range of applications for nanoporous Au due to
their two-level nanostructures
(pores size ~10 nm and structures size ~100 nm)

Nanoporous Au Particles Nanoporous Au Wires

-‘ J- i
BN
x‘gd‘,-. ST A
e e e e
Al e L)
ey,
3
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A homogeneous mixture is a solid, liquid, or gaseous mixture that has the same proportions of its components throughout any
given sample. Conversely, a heterogeneous mixture has components whose proportions vary throughout the sample
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Phase diagram for Au-Ag is a simple lens type. the
FCC phase shows complete solid solubility
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Figure 2.7: Phase diagram of the binary Ag-Au alloy. Three regions are classified based on the
initial alloy composition to prepare nanoporous gold. [51, 52]. Reprinted with permission of
ASM International. All rights reserved. www.asminternational.org.



For all the alloys that can be dealloyed, a parting limit can be observed. The parting limit 1s
a boundary where dealloying stops at a certain depth due to the MNEs passivation when the
composition of MNEs exceeds a certain value during dealloying. Typically, it is close to 50
at.% Au for Ag-Au alloy which is shown 1n Figure 2.7 as parting limit. The origin of parting
limit 1s that the enrichment of MNEs will block the pathway which connects the electrolytes
and LNEs. Therefore, the whole dealloying process 1s hindered by the passivation of MNE
enriched surface and no more dissolution of LNEs. The parting limit determines the upper limit
of content of MNEs that can be selected to prepare NPG by dealloying. When the Au content
1s higher than the parting limit, it 1s 1n the parting limit region.

The standard composition region refers to that a monolithic body of nanoporous structure can
be prepared from this composition region with an empirical composition range of 16 - 50 at.%
Au [52]. It 1s the composition region between parting limit and low limit. For Ag-Au sold
solution system, crack-free NPG can be fabricated from this composition range which 1s an
ideal candidate for mechanical test [40, 41, 53].

When the Au composition 1s lower than 16 at.%. the samples tend to fall into small pieces
during dealloying, therefore, losing its integrity [52]. Here, this composition range 1s defined
as the dilute composition region which 1s below the low limit showing in Figure 2.7. Normally,
this composition range is not desirable in making NPG. Interestingly, Ateya et al. studied the




Dealloying



A bimetallic alloy requires to be characterized by two key properties so that the dealloying process can affectively proceed
|27]: the alloy components form a homogeneous binary solid solution and the metal/metal-ion electrode potential of the two
metals must differ considerably. The AuxAgy alloy fulfills these requirements. In fact: 1) the Au—Ag system shows a phase

diagram characterized by complete solid solubility across the entire range of composition (the atomic radius, crystal structure,

valence, and electronegativity of Au and Ag are similar) and 2) the difference in the Au/Ag-ion electrode potentials is 0.8 V
[42].In particular, the binary phase diagram of the AuxAgy system presents a lens-shape in the temperature —composition plot
|42]. This diagram is formed by three regions: at high temperature, there is a liquid solution while at low temperature, there is
a solid solution. Within the lens region, there is a mixture of solid and liquid phases. About the dealloying process of the
AuxAgy alloy to prepare NPG, the phase diagram of the binary AuxAgy alloy can be divided into three different regions based on
the alloy composition: dilute composition region, standard composition region, and parting limit region [10]. The parting
limit is a boundary region, typically in the 50—100 at.% Au, where dealloying stops at a certain depth due to the Ag passivation
when the composition of Ag exceeds a certain value during dealloying. The standard composition region, typically in the
16—50 at.% Au range, refers to that a monolithic body of nanoporous structure can be prepared, typically with a cracked
structure which can be affected by the Au-Ag composition and dealloying acid concentration [43]. When the Au composition
is lower than 16 at.%, the samples tend to fall into small pieces during dealloying, therefore, losing their integrity.

The Au-Ag system has been the most commonly used alloy
for synthesizing np-Au, due to (i) availability of etching technigques with high
selectivity for silver; (i1) complete solid solubility across all compositions; and
(111) mechanical compatibility (e.g., similar yield stress, thermal expansion, etc.)



3.3. Dissolution Methods

Nitric acid 1s commonly used to dealloy Au-Ag n order to produce np-Au and has the advantage of

circumventing the use of electrochemical dissolution circuitry. However, this comes with the trade-off
of diminished control of pore size. Alternatively, application of an anodic potential during dealloying
in perchloric acid increases the silver dissolution rate compared to the gold diffusion rate, and hence
results 1 finer porosity. The latter method has a greater number of controllable parameters, such as
electrolyte temperature, critical potential (potential where the less noble constitute begins to dissolve),
electrolyte composition, efc. Several groups have investigated key parameters during this
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Nanoporous Au can be easily prepared from Au-X alloys of suitable
composition by using a simple dealloying process of the X less noble elements
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Figure 2

Working model for porosity evolution in dealloying in the Ag-Au alloy system (Ag, gray; Au, orange). (@) The
rate-limiting step is the formation of terrace vacancies, which then grow into lateral vacancy clusters. (#) As
dissolution proceeds layer by layer, surface diffusion passivates low-coordination sites with Au, leading to
surface roughening. (¢,d) As dealloying continues, there is insufficient Au to totally passivate the increasing
surface area, leading to undercutting and bifurcation of ligaments. (¢) The result of this process is a
bicontinuous porous structure in which ligaments have Au-rich surfaces and Ag-rich interiors. (f) As
coarsening increases the length scale of the initial structure, residual Ag atoms are exposed and dissolved,
leaving a final structure with much reduced Ag content.

3.1. Porosity Formation

Despite the first observation of porosity evolution in np-Au during early 1990s (an early report of
pattern formation during dealloying dates back to 1920s [23]), the actual mechanisms that played a
pivotal role were not well-studied until more than a decade later. Erlebacher et a/. used an elegant
kinetic model to describe the nanoporosity formation in a Au-Ag alloy, using only diffusions of silver
and gold, and a dissolution of silver [24,25]. They suggested that spinodal decomposition arranges the
gold atoms in two-dimensional clusters at the surface of the alloy, as silver 1s dissolved. Through this
process, the new underlying alloy 1s constantly exposed to the electrolyte setting the length scale of the
pore morphology. Figure 2 schematically summarizes the proposed mechanism.

Figure 2. Illustration of porosity formation during dealloying: (a) lateral removal of less
noble atoms (uncolored) leading to clustering of noble atoms (shaded) on surface; (b)
supplied with remaining noble atoms from dissolution, clusters coarsen until the next alloy
layer is attacked, as the characteristic length <A> appears; (c) noble atom-capped hills form
as the second layer of alloy dissolves, while the characteristic length between hills remains
the same; (d) less noble atoms can accumulate at the bases of hills, since their perimeters
are widening, without changing the characteristic length; (e) undercufting of hills
(compared the original morphology denoted with a dashed line) and increase in average
distance between hills measured along the alloy-electrolyte interface; (f) new noble atom
hills nucleate as the hill-hill distance along the alloy-electrolyte distance is approximately
twice the characteristic length. [Reproduced with permission from J. Electrochem. Soc.
2004, 7151, C614-C626. © 2004, The Electrochemical Society].
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Control of parameters durying dealloying

Formazione di “instabilta”

Ce _ . _ E. deriva dall’ energia necessaria alla
Principi di formazione delle nanocavita— cause dei formazione di nuove superfici

processi di dissociazione dell’argento I

electrolyte

dealloyed layer Gli atomi di Ag vengono

_____ attacati
bulk precursor alloy “contem po ranemanete”

Dopo averli staccati tutti si ha
un’energia Residua che crea una
nuova superficie:

AF = NkT In(aag+ fang) — mudyagian + Anlya

u felec-




Nano-fabricazioni di NPG

Ovviamente rimangono valide le condizione enunciate prima (limite
di partizione, potenziale di attivazione ecc..).

Altra condizione importante per la formazione delle nanoporosita €
appunto la temperatura, che come vediamo nella figura, fa si che le
nostre strutture abbiano un disordine maggiore (e quindi pori piu
piccoli, (a)) e man mano che la temperatura aumenta, in
concomitanza al dealloying dai metalli secondari (come l'argento), la
dimensione dei pori diminuisce sempre di piu fino a raggiungere
delle semplici frammentazioni superficiali che compromettono
anche alcune applicazioni del film.

La lunghezza critica del film di NPG e dettata dalla legge:

Cr _EFIET
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APPLIED PHYSICS LETTERS 91, 083105 (2007)

Ultrafine nanoporous gold by low-temperature dealloying and kinetics

of nanopore formation

L. H. Qian and M. W. Chen?
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

acteristic length of nanoporous gold. Based on the surface
diffusion controlled coarsening mechanism, the diffusivity
(D) of gold atoms at each etching temperature can be esti-
mated by the equﬂtin:mlg

Cdo)*kT

= 2
32yta* @)

where k is Boltzmann constant, vy is surface energy, ¢ is the
etching time, and a is the lattice parameter. According to the
parameters compiled in Ref, 14 and measured by this study
the surface diffusivity of gold in electrolyte at —20, 0, and
25 °C are estimated to be 9.0X 10722, 1.5X 107, and 2.0
X 107" m?/s, respectively. Therefore, slicht temperature
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FIG. 1. (Color online) Evolution of nanopore size with etching time and
temperature. (a) Correlation between nanopore size and time at various etch-
ing temperatures. (b) Measurements of the coarsening exponent by plotting
In[d(1)] vs Int at each etching temperature. (c) Estimation of the activation

1000/RT

energy for the nanopore formation.



ing time at various temperatures was plotted in Fig. 1(a). The
analysis of the kinetic data suggests that the coarsening rate
of nanopores follows a nonlinear relationship, which is inter-
estingly similar to the isothermal grain growth in polycrys-
talline materials,'’ 1.e.,

a’(a‘)”:kﬂa‘exp(ﬁ) =KD, (1)

where diffusivity D;=D, exp[g—‘?) and d(r) is pore size at
etching time t; ky, K, and Dy are constants and kg=KDy; n 1s
coarsening exponent; R 1s the gas constant; T is the etching
temperature; and E 1s the activation energy for the nanopore
formation and coarsening. The coarsening exponent n can be
directly measured by plotting the In[d(7)] vs In ¢ curves, as
shown in Fig. 1(b). The excellent linear relations between
In[d(f)] and In¢ at various temperatures further verify the
logarithmic coarsening mechanism of nanoporous gold. The
nearly identical slope, ~0.28, of the fitting lines for different
etching temperatures 1mplies an 1nvariable coarsening
mechanism at different temperatures. The n value for the
coarsening of nanoporous gold is determined to be
~3.4-3.7, which 1s very close to the kinetic parameter, ~4,

reflecting surface relaxation of roughened metals in
solutions. '

Because the formation of the nanoporous structure 1s de-
pendent on the temperature and time, apparently 1t 1s a
thermal-activation process and the measurement of activa-
tion energy will be helpful to understand the underlying
mechanisms of the dealloying process. Based on the linear
fitting between In(d(¢)"/t) and (RT)~' [Fig. 1(c)], the activa-
tion energy for the formation and coarsening of nanoporous
gold 1s measured to be ~63.4 kJ/mol. This value 1s close to
that of surface diffusion of gold atoms in acids
(50-60 kJ/mol)," strongly suggesting that the formation
and the coarsening of nanoporous gold are controlled by the

cold diffusion at the allov/electrolvte interfaces. The excel-

lent linear relationship spanning the whole etching time scale
[Figs. 1(b) and 1(c)] indicates that both dealloying and nan-
opore coarsening are dominated by one process, 1.e., the sur-
face diffusion of gold atoms in electrolyte.

63.4 kJ/mole=0.66 eV/at



Control of parameters by post-dealloying processes (annealings)

Applied Surface Science 355 (2015) 133-138
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Effect of annealing atmosphere on the thermal coarsening
of nanoporous gold films

A.Y.Chen?,S.S. Shi?, F. Liu?, Y. Wang®, X. Li?, J.F. Gu¢, X.F. Xied-*

Fig. 1. SEM image of the as-prepared NPG film. The inset is the cross-sectional SEM
morphology with the same scale bar.
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Fig. 2. SEM images of the NPG films annealed at different atmospheres for 2 h. (a-c) Annealed at 200, 300, and 400-C in O3, respectively; (d-f) annealed at 300, 400, and
500+=Cin Ar, respectively; (g-i) annealed at 400, 500, and 600°C in CO, respectively. All SEM images have the same scale bar. Post_dea I onl ng annea I | ngS






Nanoporous gold plasmonic structures for
sensing applications
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APPLIED PHYSICS LETTERS 90, 153120 (2007)

Surface enhanced Raman scattering of nanoporous gold: Smaller pore
sizes stronger enhancements
L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen®

International Frontier Center for Advanced Materials, Institute for Materials Research, Tohoku University,
Sendai 980-8577, Japan
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Three-dimensional morphology of nanoporous gold

Takeshi Fujita,' Li-Hua Qian,' Koji Inoke,? Jonah Erlebacher,® and Ming-Wei Chen'?
LWP! Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

“FEI Company Japan Ltd., Minato-ku, Tokyo 108-0075, Japan
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Geometric effect on surface enhanced Raman scattering of nanoporous
gold: Improving Raman scattering by tailoring ligament and

nanopore ratios

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen?®

WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
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FIG. 1. (Color online) Representative (a) top-view SEM micrograph and (b)
3D electron tomigraphic image of the AP-NPG films with d=D
=20.5 nm. (c) Top-view SEM of the GP-NPG films Au plated for 100 min.
Inset: TEM micrograph. (d) Relationship between t and D or d of GP-NPG
films.
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FIG. 2. (Color online) SERS spectra of (a) R6G and (b) CV molecules
adsorbed on GP-NPG films with different d/D ratios. Laser excitation:
514.5 nm for both molecules. (c) Nanopore-size dependence of the inte-
grated SERS intensity of Raman bands of R6G and CV at 1650 and
1175 cm™, respectively. (d) The normalized SERS enhancements of GP-
NPG films {ISERS,GP-NIE’FISERS,AP-NI‘G} as a function of the d/D ratios.
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FIG. 2. (Color online) UV-Vis extinction spectra of porous gold films with
(a) 10 nm; (b) 30 nm, and (c) 50 nm are recorded by immersing them into
FIG. 1. (Color online) SEM micrographs of NPG synthesized by means of various dielectric environments. Refractive index of these solution increases
free corrosion for 5 min (a) and 24 h (b). (c) UV-Vis extinction spectra and from left to right: water (n=1.33), ethanol (n=1.36), 3:1 ethanol/toluene
(d) the resonant peak position of \; and A\, of NPG with the pore sizes of (n=1.39), 1:1 ethanol/toluene (n=1.429), 1:3 ethanol/toluene (n=1.462),
10-50 nm in water. For comparison, the dashed line represents the size and toluene (n=1.495). (d) Dependence of resonance (A, empty symbols)

dependence resonant band of gold nanoparticles. and LSPR (A,, solid symbols) peaks of NPG films on refractive index.
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FIG. 1. (Color online) Top-view SEM micrograph of dealloyed AggsAuss
Wlth an average nanopore Sizes Of (a) 10, (b) 20_ and (c) 30 nm. (d) Three_ F[G 2 (COIOI‘ Online) (a) FIUOT?SCCI:]CE emission SPectra Of ICG Conjuga'ted
dimensional electron tomogeraph of NPG with the nanopore size of to the HSA-coated NPG films with different pore size (D). Inset: Absorption
10 i L £ spectrum of ICG. (b) EFs of ICG/HSA/NPG films as a function of D
' under the excitations of 514.5 and 632.8 nm, respectively. (c) Pore size

dependence of near-field (|JE(D)|*) and quantum yield enhancements
(Onpc(D)/ Qg) of ICG/HSA/NPG films under the illumination of 514.5 nm.
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FIG. 3. (Color online) Resistance of a growing gold film on
glass as a function of volume (or area) fraction f of gold. Images
included show characteristic morphology at each stage of gold cov-
erage. Models for d=2 and d=3 percolation are included, along
with a critical curve for a=2.2.
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Nanoporous gold for enzyme-free electrochemical glucose sensors
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Figure 1. SEM and TEM images of NPG by dealloying AuzsAggs in 1
concentrated acid at room temperature. (a) SEM micrograph of NPG ’ . g - - "-;‘(.f;“ xy =
. . ~ o (L 200 00 (L1
dealloyed fgr 15 min; (b) SEM micrograph of NPG dealloye.d for 2 h: : Time /s ’ ! Time/s
(c) SEM micrograph of NPG dealloyed for 4 h; (d) TEM micrograph

of NPG dealloyed for 15 min; and (e) electron tomograph of the NPG
dealloyed for 15 min. The inset in (d) shows the selected area electron
diffraction pattern of NPG.

Figure 2. CV curves of NPG with different pore sizes and polycrystalline Au (insets) (a) in 0.1 M PBS and (b) in 0.1 M PBS containing 50 mM
glucose. Scan rate: 50 mV s™'. Chronoamperometry curves of NPG with pore size of 18 nmin 0.1 M PBS solution with successive addition of 1 mM
glucose at the constant potentials of (c) 0.1 V and (d) 0.3 V. respectively.
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DNA Sensing
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Figure 1. Scanning electron microscope images of (a) unannealed np- Voltage (mV) vs Ag/ AgCl
Au film; (b) annealed np-Au film (obtained via thermal treatment at

225 °C). Insets: cross-sectional views. Figure 2. CV measurements of np-Au, annealed np-Auy, and planar Au
films performed in 0.05 M sulfuric acid at a scan rate of 50 mV/s.
Inset: enhancement factors of different morphologies: (1) planar Au,
(2) annealed np-Au, and (3) unannealed np-Au.



Scheme 1. Hybridization Event in Unannealed and Annealed
np-Au Morphologies”

a) Molecular flux (top) Molecular flux (top)
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“(a) For the unannealed np-Au with minimal cracks, the molecules
(e.g., DNA probes) can permeate the porous films only from the top
surface. (b) For annealed np-Au with cracks separating the porous
islands, the molecules can permeate the porous film from the top and
side of the islands, thereby enhancing the accessibility of the porous
electrode. (c) For a planar electrode, a target DNA moving randomly
through the solution has a small probability of making molecular
contact, that is, hybridizing with the immobilized DNA probes. (d)
For a porous electrode, once the target DNA enters the pore, it is
surrounded by surfaces immobilized with probe DNA and the random
movement yields a much higher hybridization probability.
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Nanoporous gold nanoparticles are fabricated by combining a thermal dewetting process of Au/Ag bi-
layer films and a dealloying process. As the gold concentration 1s small enough within the dewetted

nanoparticles, a complete chemical removal of Ag can be achieved and there is a size shrinking during
the dealloying process. The nanoporous gold nanoparticles possess a much higher surface-to-volume

ratio than bulk nanoporous gold films or gold nanoparticles. The nanoporous nanoparticles have

a potential usage in chemical, photonic, and catalytic applications.



AWAgZ bi-layer nims with different layer thicknesses (O nm AW
20 nm Ag and 10 nm Au/20 nm Ag) were deposited on SiO,/Si
substrates using electron beam evaporation. 200 nm thermal
Si0, were grown on the Si substrates prior to deposition in order
to prevent the reaction between the substrate and the subse-

quently deposited films. The dewetting of the bi-layer films was (a) (b) (C)
5 nm Au/20 nm Ag 10 nm Au/20 nm Ag

induced by annealing at 900 °C in Ar for 15 min. After annealing,
the samples were submerged in a 65 wt?% HNO; aqueous solution
at 21 °C for 5 min. The dewetted nanoparticles and the nano-

Au layer/Ag layer

Annealing
induced dewetting

Dealloying

Fig. 1 (a) Schematic drawing of the synthesis of nanoporous gold nanoparticles by combining the dewetting process (for alloy nanoparticles) and the
dealloying process (for nanoporous gold). (b) Schematic drawing of the 5 nm Aw20 nm Ag films (upper panel) and the corresponding SEM images of the
dewetted alloy nanoparticles (middle panel) and formed nanoporous gold nanoparticles (lower panel). White arrows in the lower panel SEM image
indicate the contour of the particles before dealloying. (¢) Schematic drawing of the 10 nm Au/20 nm Ag films (upper panel) and the corresponding SEM
images of the dewetted alloy nanoparticles (middle panel) and formed nanoporous gold particles (lower panel).
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quently deposited metal films and the Si substrate. Au/Ag
bilayers with different layer thicknesses (10 nm/20 nm,
10 nm/25 nm, 10 nm/30 nm, 15 nm/25 nm, and 15 nm/30 nm)
were deposited onto the prepatterned substrates by e-beam
evaporation, and then annealed at 700 °C in Ar for 15 min to in-
duce dewetting. This temperature is well below the solidus
temperature of the Au—Ag system, i.e., the dewetting is solid-
state dewetting. Hence, interdiffusion of Au and Ag occurred.
and perfectly ordered arrays of Au—Ag alloy nanoparticles were

formed on the prepatterned substrates. Subsequently, de-
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Figure 1: Schematics of the fabrication process for an ordered array of nanoporous gold nanoparticles.
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Figure 4: Plot of the average ligament size as a function of the Au concentration of alloy nanoparticles. The error bars represent the standard devia-
tion. Insets show the corresponding SEM images. Scale bars in the insets are 100 nm.

Figure 2: SEM micrographs of samples before and after dealloying:
(a) ordered array of Au—Ag alloy nanoparticles dewetted from the

15 nm Au/30 nm Ag bilayers, and (b) ordered array of nanoporous gold
nanoparticles formed after the subsequent dealloying.



Nanoporous Au Particles
Aim of the present work

Comparison of the Characteristics (Porosity) of Nanoporous Au Particles Produced
on Surfaces by Alloying and Dewetting of Au/Ag Nanoscale-Thick Bilayers in the
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Samples Preparation and Characterization
Au-Ag Bilayers Alloying and Dewetting

\QQ% 3 5 5 5 5 E=0.5 J/cm? Ag layer, x,,, atoms/cm?

(>4) Au layer, x,,, atoms/cm?
Q§ R\ A : SiO
b % 0 g layer, x,, atoms/cm 10,
‘ %o QJ\‘ Au layer, x,,, atoms/cm? (thermally grown, ~1 pm)
‘bgz QQ‘ b@é Textured FTO
A & (~200 nm)
‘& Quartz

Ag layer, x,,, atoms/cm?

g

Au layer, x,,, atoms/cm?

Sample Sheet Resistance
(Q/sq)

Ag layer, x,, atoms/em®  Complete Ablation Textured FTO FTO 86
Au layer, x,, atoms/cm? of the Metal Films (~200 nm)
: FTO-1.0 J/cm? 8.1
SiO, from the Substrate QUi
(thermally grown, ~1 pm) due to the SiO, low e FTO_Au5nm_1.0 J/cm? 7.5
thermal FTO_AulOnm_1.0 J/cm? 7.5

conductivity FTO_Aul0nm_500 °C 3h 19.7




Samples Preparation and Characterization
Au-Ag Bilayers Alloying and Dewetting
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Phase diagram for Au-Ag is a simple lens type. the
FCC phase shows complete solid solubility
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Results and Discussion
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Results and Discussion

Particles Porosity
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