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Abstract

Electronic transport properties through some model quantum systems are re-visited. A simple

tight-binding framework is given to describe the systems where all numerical calculations are made

using the Green’s function formalism. First, we demonstrate electronic transport in four different

polycyclic hydrocarbon molecules, namely, benzene, napthalene, anthracene and tetracene. It is

observed that electron conduction through these molecular wires is highly sensitive to molecule-to-

electrode coupling strength and quantum interference of electronic waves passing through different

branches of the molecular ring. Our investigations predict that to design a molecular electronic

device, in addition to the molecule itself, both the molecular coupling and molecule-to-electrode

interface geometry are highly important. Next, we make an in-depth study to design classical logic

gates with the help of simple mesoscopic rings, based on the concept of Aharonov-Bohm effect. A

single mesoscopic ring or two such rings are used to establish the logical operations where the key

controlling parameter is the magnetic flux threaded by the ring. The analysis might be helpful

in fabricating meso-scale or nano-scale logic gates. Finally, we address multi-terminal quantum

transport through a single benzene molecule using Landauer-Büttiker formalism. Quite interest-

ingly we see that a three-terminal benzene molecule can be operated as an electronic transistor and

this phenomenon is justified through current-voltage characteristics. All these essential features

of electron transport may provide a basic theoretical framework to examine electron conduction

through any multi-terminal quantum system.
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I. INTRODUCTION

A. Basic concepts

Mesoscopic physics is a sub-discipline of condensed matter physics which deals with sys-

tems whose dimensions are intermediate between the microscopic and macroscopic length

scales [1–5]. In meso-scale region fluctuations play an important role and the systems are

treated quantum mechanically, in contrast to the macroscopic objects where usually the

laws of classical mechanics are used. In a simple version we can say that a macroscopic sys-

tem when scaled down to a meso-scale starts exhibiting quantum mechanical phenomena.

The most relevant length scale of quantifying a mesoscopic system is probably the phase

coherence length Lφ, the length scale over which the carriers preserve their phase informa-

tion. This phase coherence length is, on the other hand, highly sensitive to temperature and

sharply decreases with the rise of temperature. Therefore, to be in the mesoscopic regime

we have to lower the temperature sufficiently (of the order of liquid He) such that phase

randomization process caused by phonons gets minimum. Though there is no such proper

definition of the mesoscopic region, but the studied mesoscopic objects are normally in the

range of 100-1000 nanometers.

Several spectacular effects appear as a consequence of quantum phase coherence of the

electronic wave functions in mesoscopic systems like one-dimensional (1D) quantum wires,

quantum dots where electrons are fully confined, two-dimensional (2D) electron gases in

heterostructures, etc. For our illustrative purposes here we describe very briefly some of

these issues.

(i)Aharonov-Bohm Effect: One of the most significant experiments in mesoscopic physics

is the observation of Aharonov-Bohm (AB) oscillations in conductance of a small metallic

ring threaded by a magnetic flux φ [6, 7]. The origin of conductance oscillations lies in

the quantum interference among the waves traversing through two arms of the ring. This

pioneering experiment has opened up a wide range of challenging and new physical concepts

in the mesoscopic regime.

(ii) Conductance Fluctuations: The pronounced fluctuations in conductance of a disor-

dered system are observed when the temperature is lowered below 1K [8]. These fluctuations

are originated from the interference effects of the electronic wave functions traveling across
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the system and are fully different from the fluctuations observed in traditional macroscop-

ically large objects. The notable feature of conductance fluctuations in the mesoscopic

regime is that their magnitudes are always of the order of the conductance quantum e2/h,

and accordingly, these fluctuations are treated as ‘universal conductance fluctuations’ [9].

(iii) Persistent Current: In thermodynamic equilibrium a small metallic ring threaded

by magnetic flux φ supports a current that does not decay dissipatively even at non-zero

temperature. It is the well-known phenomenon of persistent current in mesoscopic nor-

mal metal rings [10–24]. This is a purely quantum mechanical effect and gives an obvious

demonstration of the AB effect [25].

(iv) Integer Quantum Hall Effect: The integer quantum Hall effect is probably the

best example of quantum phase coherence of electronic wave functions in two-dimensional

electron gas (2DEG) systems [26]. In the Hall experiment, a current is allowed to pass

through a conductor (2DEG), and, the longitudinal voltage Vx and transverse Hall voltage

VH are measured as a function of the applied magnetic field B which is perpendicular to the

plane of the conductor. In the limit of weak magnetic field, the Hall resistance RH varies

linearly with the field strength B, while the longitudinal resistance Rx remains unaffected by

this field. These features can be explained by the classical Drude model. On the other hand

for strong magnetic field and in the limit of low temperature a completely different behavior

is observed and the classical Drude model fails to explain the results. In high magnetic field

Rx shows oscillatory nature, while RH shows step-like behavior with sharp plateaus. On

these plateaus the values of RH are given by h/ne2, n being an integer, and they are highly

reproducible with great precision. These values are extremely robust so that they are often

used as the standard of resistance. The integer quantum Hall effect is a purely quantum

mechanical phenomenon due to the formation of the Landau levels and many good reviews

on IQHE are available in the literature [1, 27, 28].

(v) Fractional Quantum Hall Effect: Unlike the integer quantum Hall effect, at too

high magnetic fields and low temperatures, a two-dimensional electron gas shows additional

plateaus in the Hall resistance at fractional filling factors [29]. It has been verified that the

Coulomb correlation between the electrons becomes important for the interpretation of the

fractional quantum Hall effect and the presence of fractional filling has been traced back

to the existence of correlated collective quasi-particle excitations [30]. Extensive reviews on
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this topic can be found in the literature [28].

In the mesoscopic regime, electronic transport cannot be investigated by using the con-

ventional Boltzmann transport equation since at this length scale quantum phase coherence

plays an important role and a full quantum mechanical treatment is needed [2, 3]. In an

‘open system’ the Landauer approach [31] of ‘two-terminal conductance’ provides an elegant

technique to reveal the transport mechanisms. In the Landauer formalism a quantum system

is sandwiched between two macroscopic reservoirs, the so-called electrodes, those are kept

at thermal equilibrium. By applying a bias voltage we tune the chemical potentials of these

electrodes. The main signature of the electrodes is that electrons passing through them

along the longitudinal direction can be described as plane waves and suffer no backscat-

tering whatsoever. This allows us to describe the properties of the conductor in terms of

its scattering matrix S on the basis of plane waves within the electrodes. The Landauer

formulation is probably the simplest and elegant approach for studying electron transport

in low-dimensional quantum systems.

Ongoing trend of miniaturizing electronic devices eventually approaches the ultimate limit

where even a single molecule can be used as an electrical circuit element. Idea of devicing

a single molecule as the building block of future generation electronics seems fascinating

because of the possibility to assemble a large number of molecules onto a chip i.e., remarkable

enhancement in integration density can take place [32]. Discovery of sophisticated molecular

scale measurement methodologies such as scanning tunneling microscopy (STM), atomic

force microscopy (AFM), scanning electro-chemical microscopy (SECM), etc., have made it

possible to study electron transport phenomena in molecular bridge systems [33].

The idea of using molecules as active components of a device was suggested by Aviram and

Ratner [34] over three decades ago. Since then several ab-initio and model calculations have

been performed to investigate molecular transport theoretically [35–56]. But experimental

realizations took a little longer time to get feasible. In 1997, Reed and co-workers [57] have

studied the current-voltage (I-V ) characteristics of a single benzene molecule attached to

electrodes via thiol groups. Later various other experiments have been made to explore many

interesting features e.g., ballistic transport, quantized conductance, negative differential

resistance (NDR) [58], molecular transistor operation [59, 60] to name a few.

In short we can say that the rapid progress of theoretical as well as experimental works

on mesoscopic physics over the last few decades proves that it is a highly exciting and
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challenging branch of condensed matter physics and we hope that it will be continuing for

many more decades.

B. Aim of the review

In this dissertation we address several important issues on electron transport through

some meso-scale systems which are quite challenging from the standpoint of theoretical as

well as experimental research. A brief outline of the presentation is as follow.

On the meso-scale organic molecules, cluster of atoms, quantum dots, carbon nanotubes,

etc., can be produced with flexible and tunable conduction properties and these new realities

have tremendous technological importance. The physics of electron transport through such

devices is surprisingly rich. Many fundamental experimentally observed phenomena in such

devices can be understood by using simple arguments. In particular, the formal relation

between conductance and transmission coefficients (the Landauer formula) has enhanced the

understanding of electronic transport in the molecular bridge system. To reveal these facts,

in the first part of this review we investigate electron transport properties of some molecular

bridge systems within the tight-binding framework using Green’s function technique and

try to explain the behavior of electron conduction in the aspects of quantum interference

of electronic wave functions, molecule-to-electrode coupling strength, molecular length, etc.

Our model calculations provide a physical insight to the behavior of electron conduction

through molecular bridge systems.

Next, we explore the possibilities of designing classical logic gates at meso-scale level us-

ing simple mesoscopic rings. A single ring is used for designing OR, NOT, XOR, XNOR and

NAND gates, while AND and NOR gate responses are achieved using two such rings and in

all these cases each ring is threaded by a magnetic flux φ which plays the central role in the

logic gate operation. We adopt a simple tight-binding Hamiltonian to describe the model

where a mesoscopic ring is attached to two semi-infinite one-dimensional non-magnetic elec-

trodes. Based on single particle Green’s function formalism all calculations which describe

two-terminal conductance and current through the quantum ring are performed numerically.

The analysis may be helpful in fabricating mesoscopic or nano-scale logic gates.

Finally, in the last part, we focus our attention on the multi-terminal transport prob-

lem. Here we no longer use the Landauer approach. Büttiker has extended the study of
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two-terminal quantum transport into the multi-terminal case which is known as Landauer-

Büttiker formalism. With this approach we study multi-terminal quantum transport in

a single benzene molecule to examine the transport properties in terms of conductance,

reflection probability and current-voltage characteristics.

II. TWO-TERMINAL MOLECULAR TRANSPORT

Molecular electronics is an essential technological concept of fast-growing interest since

molecules constitute promising building blocks for future generation of electronic devices

where electronic transport becomes coherent [32, 61]. For purposeful design of an elec-

tronic circuit using a single molecule or a cluster of molecules, the most important require-

ment is the understanding of fundamental processes of electron conduction through separate

molecules used in the circuit. A fruitful discussion of electron transport in a molecular wire

was first studied theoretically by Aviram and Ratner during 1974 [34]. Later, numerous

experiments have been made in different molecules placed between electrodes with few nano-

meter separation [57–60, 62–70]. It is very crucial to control electron transmission through

such molecular electronic devices, and, though extensive studies have been done, yet the

present understanding about it is not fully explored. For example, it is not very clear how

molecular conduction is affected by geometry of the molecule itself or by the nature of its

coupling to side attached electrodes. To construct an electronic device made with molecules

and to utilize it properly we need a deep analysis of structure-conductance relationship. In a

recent work Ernzerhof et al. [71] have illustrated a general design principle based on several

model calculations to reveal this concept. In presence of applied bias voltage a current passes

through the molecule-electrode junction and it becomes a non-linear function of the applied

voltage. The detailed description of it is quite complicated. Electron transport properties in

molecular systems are highly sensitive on several quantum effects like quantum interference

of electronic waves passing through different arms of the molecular rings, quantization of

energy levels, etc. [42–46]. The main motivation of studying molecular transport is that

molecules are currently the subject of substantial theoretical, experimental and technologi-

cal interest. Using molecules we can design logic gates, molecular switches, several transport

elements that need to be well characterized and explained.

In this section we address the behavior of electron transport through some polycyclic
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hydrocarbon molecules based on a simple tight-binding framework. Though several ab ini-

tio [72–80] methods are used to enumerate electron transport in molecular systems, but

simple parametric approaches are rather much helpful to understand the basic mechanisms

of electron transport in detail. Beside this here we also make our attention only on the qual-

itative effects instead of the quantitative results which also motivate us to perform model

calculations in the transport problem.

To describe the behavior of molecular transport let us first construct the methodology

for two-terminal quantum transport through a simple finite sized conductor.

A. Theoretical Formulation

We begin with Fig. 1. A finite sized 1D conductor with N atomic sites is attached to two

semi-infinite 1D metallic electrodes, viz, source and drain. At much low temperature and

bias voltage, conductance g of the conductor can be written by using Landauer conductance

1 2 N0 N−1 N+1

Source Conductor Drain

FIG. 1: Schematic view of a one-dimensional conductor with N number of atomic sites attached

to two electrodes, namely, source and drain. The atomic sites at the two extreme ends of the

conductor are labeled as 1 and N , respectively.

formula,

g =
2e2

h
T (1)

where, T is the transmission probability of an electron through the conductor. In terms

of the Green’s function of the conductor and its coupling to the side attached electrodes,

transmission probability can be expressed as,

T = Tr [ΓSG
r
cΓDG

a
c ] (2)

where, Gr
c and Ga

c are the retarded and advanced Green’s functions of the conductor, re-

spectively. ΓS and ΓD are the coupling matrices due to the coupling of the conductor to
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the source and drain, respectively. For the combined system i.e., the conductor and two

electrodes, the Green’s function becomes,

G = (E −H)−1 . (3)

E is the injecting energy of the source electron and H is the Hamiltonian of the combined

system. Evaluation of this Green’s function requires the inversion of an infinite matrix as

the system consists of the finite size conductor and two semi-infinite 1D electrodes, which is

really a very difficult task. However, the entire system can be partitioned into sub-matrices

corresponding to the individual sub-systems, and then the Green’s function for the conductor

can be effectively written as,

Gc = (E −Hc − ΣS − ΣD)
−1 (4)

where, Hc is the Hamiltonian of the conductor. Withing a non-interacting picture, the

tight-binding Hamiltonian of the conductor looks like,

Hc =
∑

i

ǫic
†
ici +

∑

<ij>

t
(

c†icj + c†jci

)

. (5)

c†i (ci) is the creation (annihilation) operator of an electron at site i, ǫi is the site energy of an

electron at the i-th site and t corresponds to the nearest-neighbor hopping integral. A similar

kind of tight-binding Hamiltonian is also used for the description of electrodes where the

Hamiltonian is parametrized by constant on-site potential ǫ0 and nearest-neighbor hopping

integral v. In Eq. 4, ΣS = h†
ScgShSc and ΣD = hDcgDh

†
Dc are the self-energy operators

due to the two electrodes, where gS and gD are the Green’s functions for the source and

drain, respectively. hSc and hDc are the coupling matrices and they will be non-zero only

for the adjacent points in the conductor, 1 and N as shown in Fig. 1, and the electrodes

respectively. The coupling terms ΓS and ΓD of the conductor can be calculated from the

following expression,

Γ{S,D} = i
[

Σr
{S,D} − Σa

{S,D}

]

. (6)

Here, Σr
{S,D} and Σa

{S,D} are the retarded and advanced self-energies, respectively, and they

are conjugate to each other. Datta et al. [81] have shown that the self-energies can be

expressed like,

Σr
{S,D} = Λ{S,D} − i∆{S,D} (7)
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where, Λ{S,D} are the real parts of the self-energies which correspond to the shift of the

energy eigenvalues of the conductor and the imaginary parts ∆{S,D} of the self-energies

represent the broadening of the energy levels. Since this broadening is much larger than

the thermal broadening we restrict our all calculations only at absolute zero temperature.

The real and imaginary parts of the self-energies can be determined in terms of the hopping

integral (τ{S,D}) between the boundary sites (1 and N) of the conductor and electrodes,

energy (E) of the transmitting electron and hopping strength (v) between nearest-neighbor

sites of the electrodes.

The coupling terms ΓS and ΓD can be written in terms of the retarded self-energy as,

Γ{S,D} = −2 Im
[

Σr
{S,D}

]

. (8)

Now all the information regarding the conductor to electrode coupling are included into

these two self energies as stated above. Thus, by calculating the self-energies, the coupling

terms ΓS and ΓD can be easily obtained and then the transmission probability (T ) will be

calculated from the expression as presented in Eq. 2.

Since the coupling matrices hSc and hDc are non-zero only for the adjacent points in the

conductor, 1 and N as shown in Fig. 1, the transmission probability becomes,

T (E) = 4∆S
11(E)∆D

NN(E) |G1N(E)|2 (9)

where, ∆11 =< 1|∆|1 >, ∆NN =< N |∆|N > and G1N =< 1|Gc|N >.

The current passing through the conductor is treated as a single-electron scattering pro-

cess between the two reservoirs of charge carriers. We establish the current-voltage relation

from the expression [2, 3],

I(V ) =
e

π~

EF+eV/2
∫

EF−eV/2

T (E) dE (10)

where, EF is the equilibrium Fermi energy. For the sake of simplicity, here we assume that

the entire voltage is dropped across the conductor-electrode interfaces and it doesn’t greatly

affect the qualitative aspects of the current-voltage characteristics. This is due to the fact

that the electric field inside the conductor, especially for shorter conductors, seems to have

a minimal effect on the conductance-voltage characteristics. On the other hand, for quite

larger conductors and higher bias voltages, the electric field inside the conductor may play
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a more significant role depending on the internal structure of the conductor [81], though the

effect becomes too small. Using the expression of T (E) (Eq. 9), the final form of I(V ) is,

I(V ) =
4e

π~

EF+eV/2
∫

EF−eV/2

∆S
11(E)∆D

NN(E)× |G1N (E)|2 dE (11)

Eqs. 1, 9 and 11 are the final working expressions for the determination of conductance g,

transmission probability T , and current I, respectively, through any finite sized conductor

placed between two 1D metallic reservoirs. Throughout our presentation, we use the units

where c = h = e = 1, and, the energy scale is measured in unit of t.

B. Molecular System and Transport Properties

Based on the above two-terminal transport formulation, in this section, we describe the

behavior of electron conduction through some polycyclic hydrocarbon molecules those are

schematically shown in Fig. 2. The molecules are: benzene (one ring), napthalene (two

rings), anthracene (three rings) and tetracene (four rings). These molecules are connected

to the electrodes (source and drain) via thiol (S-H bond) groups. In real experimental

situations, gold (Au) electrodes are generally used and the molecules are coupled to them

through thiol groups in the chemisorption technique where hydrogen (H) atoms removes

ans sulfur (S) atoms reside. To emphasize the effect of quantum interference on electron

transport, we couple the molecules to the source and drain in two different configurations.

One is defined as cis configuration where two electrodes are placed at the α sites, whereas

in the other arrangement, called as trans configuration, electrodes are connected at the β

sites. Molecular coupling is another important factor which controls the electron transport.

To justify this fact, here we describe the essential features of electron transport for the two

limiting cases of molecular coupling. One is the weak-coupling limit which mathematically

treated as τ{S,D} << t and in the other case we have τ{S,D} ∼ t which is defined as the

strong-coupling limit. τS and τD are the hopping strengths of the molecule to the source

and drain, respectively. The common set of values of the parameters used in the calculation

are as follows. τS = τD = 0.5, t = 2.5 (weak-coupling) and τS = τD = 2, t = 2.5 (strong-

coupling). In the electrodes we set ǫ0 = 0 and v = 4. The Fermi energy EF is fixed at

0.
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(a)

α α

(b)

α α

(c)

α α

(d)

(e)

β

β

(f)

β

β

(g)

β

β

(h)

β

β

FIG. 2: Schematic view of four different polycyclic hydrocarbon molecules: benzene, napthalene,

anthracene and tetracene. The molecules are connected to the electrodes in two different configu-

rations via thiol (S-H bond) groups. One is the so-called cis configuration (α-α position) and the

other one is the so-called trans configuration (β-β position).

1. Conductance-energy characteristics

In Fig. 3, we show the behavior of conductance (g) as a function of injecting electron

energy (E) for the hydrocarbon molecules when they are coupled to the electrodes in the

trans configuration, where (a), (b), (c) and (d) correspond to the benzene, napthalene,

anthracene and tetracene molecules, respectively. In the limit of weak molecular coupling,

conductance shows sharp resonant peaks (solid lines) for some specific energy eigenvalues,

while it drops almost to zero for all other energies. At the resonance, conductance approaches

to 2, and therefore, the transmission probability (T ) becomes unity (from the Landauer

conductance formula g = 2T in our chosen unit system c = e = h = 1). The resonant

peaks in the conductance spectrum coincide with eigenenergies of the single hydrocarbon

molecules. Thus, from the conductance spectrum we can easily implement the electronic

structure of a molecule. The nature of these resonant peaks gets significantly modified when

molecular coupling is increased. In the strong-coupling limit, width of the resonant peaks

gets broadened as shown by the dotted curves in Fig. 3 and it emphasizes that electron
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conduction takes place almost for all energy values. This is due to the broadening of the

molecular energy levels, where contribution comes from the imaginary parts of the self-

energies ΣS(D) [81].

To establish the effect of quantum interference on electron transport, in Fig. 4, we plot

conductance-energy characteristics for these molecules when they are connected to the elec-

trodes in the cis configuration. (a), (b), (c) and (d) correspond to the results for the benzene,

-2 -1 1 2
E

0

2

g

HcL

-2 -1 1 2
E

0

2

g

HdL

-2 -1 1 2
E

0

2

g

HaL

-2 -1 1 2
E

0

2

g

HbL

FIG. 3: g-E spectra of four different polycyclic hydrocarbon molecules attached to the electrodes

in the trans configuration, where (a), (b), (c) and (d) correspond to the benzene, napthalene,

anthracene and tetracene molecules, respectively. The solid and dotted curves represent the weak

and strong molecule-to-electrode coupling limits, respectively.

napthalene, anthracene and tetracene molecules, respectively, where the solid and dotted

curves indicate the identical meaning as in Fig. 3. From these spectra we clearly see that

some of the conductance peaks do not reach to unity anymore and achieve much reduced

amplitude. This behavior can be justified as follow. During the propagation of electrons

from the source to drain, electronic waves which pass through different arms of the molecular

ring/rings can suffer a phase shift among themselves, according to the result of quantum

interference. As a result, probability amplitude of getting an electron across the molecule

becomes increased or decreased. The cancellation of transmission probabilities emphasizes
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the appearance of anti-resonant states which provides an interesting feature in the study

-2 -1 1 2
E

0

2

g HcL

-2 -1 1 2
E

0

2

g HdL

-2 -1 1 2
E

0

.06

g
HaL

-2 -1 1 2
E

0

2

g HbL

FIG. 4: g-E curves of four different polycyclic hydrocarbon molecules attached to the electrodes in

the cis configuration, where (a), (b), (c) and (d) correspond to the benzene, napthalene, anthracene

and tetracene molecules, respectively. The solid and dotted lines represent the similar meaning as

in Fig. 3.

of electron transport in interferometric geometries. From these conductance-energy spectra

we can predict that electronic transmission is strongly affected by the quantum interference

effect or in other words the molecule-to-electrode interface geometry.

2. Current-voltage characteristics

The scenario of electron transport through these molecular wires can be much more

clearly explained from current-voltage (I-V ) spectra. Current through the molecular sys-

tems is computed by the integration procedure of transmission function T (see Eq. 11). The

behavior of the transmission function is similar to that of the conductance spectrum since

the relation g = 2T is satisfied from the Landauer conductance formula. In Fig. 5, we plot

I-V characteristics of the hydrocarbon molecules when they are connected in the trans con-

figuration to the source and drain, where (a) and (b) correspond to the currents for the cases
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of weak- and strong-coupling limits, respectively. The solid, dotted, dashed and dot-dashed

lines represent I-V curves for the benzene, napthalene, anthracene and tetracene molecules,

respectively. It is observed that, in the weak-coupling limit current shows staircase-like

structure with sharp steps. This is due to the discreteness of molecular resonances as shown

-4 -2 2 4
V

-5.4

5.4

I
HbL

-4 -2 2 4
V

-.49

.49

I
HaL

FIG. 5: I-V spectra of polycyclic hydrocarbon molecules connected to the electrodes in the trans

configuration, where (a) and (b) correspond to the results for the weak and strong molecule-to-

electrode coupling cases, respectively. The solid, dotted, dashed and dot-dashed lines represent the

currents for the benzene, napthalene, anthracene and tetracene molecules, respectively.

by the solid curves in Fig. 3. As the voltage increases, electrochemical potentials on the

electrodes are shifted and eventually cross one of the molecular energy levels. Accordingly,

a current channel is opened up and a jump in I-V curve appears. The shape and height of

these current steps depend on the width of the molecular resonances. With the increase of

molecule-to-electrode coupling strength, current varies almost continuously with the applied

bias voltage and achieves much higher values, as shown in Fig. 5(b). This continuous varia-

tion of the current is due to the broadening of conductance resonant peaks (see the dotted

curves of Fig. 3) in the strong molecule-to-electrode coupling limit.

The effect of quantum interference among the electronic waves on molecular transport is

much more clearly visible from Fig. 6, where I-V characteristics are shown for the hydrocar-
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bon molecules connected to the electrodes in the cis configuration. (a) and (b) correspond to

the currents in the two limiting cases, respectively. The solid, dotted, dashed and dot-dashed

curves give the same meaning as in Fig. 5. In this configuration (cis), current amplitude

gets reduced enormously than the case when electrodes are coupled to the molecules in the

-4 -2 2 4
V

-.75

.75

I
HbL

-4 -2 2 4
V

-.054

.054

I

HaL

FIG. 6: I-V curves of polycyclic hydrocarbon molecules connected to the electrodes in the cis

configuration, where (a) and (b) correspond to the results for the weak and strong molecule-to-

electrode coupling cases, respectively. The solid, dotted, dashed and dot-dashed lines represent the

identical meaning as in Fig. 5.

trans configuration. This enormous change in current amplitude is caused solely due to the

effect of quantum interference between electronic waves passing through the molecular arms.

Therefore, we can predict that designing a molecular device is significantly influenced by

the quantum interference effect i.e., molecule-to-electrode interface structure.

To summarize, in this section, we have introduced a parametric approach based on a

simple tight-binding model to investigate electron transport properties of four different

polycyclic hydrocarbon molecules sandwiched between two 1D metallic electrodes. This

approach can be utilized to study transport behavior in any complicated molecular bridge

system. Electron conduction through the molecular wires is strongly influenced by the

molecule-to-electrode coupling strength and quantum interference effect. Our investigation
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provides that to design a molecular electronic device, in addition to the molecule itself, both

the molecular coupling and molecule-electrode interface structure are highly important.

III. DESIGNING OF CLASSICAL LOGIC GATES

Electronic transport in quantum confined geometries has attracted much attention since

these simple looking systems are the promising building blocks for designing nanodevices

especially in electronic as well as spintronic engineering. The key idea of designing nano-

electronic devices is based on the concept of quantum interference, and it is generally pre-

served throughout the sample having dimension smaller or comparable to the phase coher-

ence length. Therefore, ring type conductors or two path devices are ideal candidates where

the effect of quantum interference can be exploited [82–84]. In such a ring shaped geometry,

quantum interference effect can be controlled by several ways, and most probably, the effect

can be regulated significantly by tuning the magnetic flux, the so-called Aharonov-Bohm

(AB) flux, that threads the ring.

In this section we will explore how a simple mesoscopic ring can be utilized to fabricate

several classical logic gates. A single mesoscopic ring is used to design OR, NOT, XOR,

XNOR and NAND gates, while AND and NOR gates are fabricated with the help of two

such quantum rings. For all these logic gates, AB flux φ enclosed by a ring plays the central

role and it controls the interference condition of electronic waves passing through two arms

of the ring. Within a non-interacting picture, a tight-binding framework is used to describe

the model and all calculations are done based on single particle Green’s function technique.

The logical operations are analyzed by studying two-terminal conductance as a function of

energy and current as a function of applied bias voltage. Our numerical analysis clearly

supports the logical operations of the traditional macroscopic logic gates.

Here we describe two-input logic gates. The inputs are associated with externally applied

gate voltages through which we can tune the strength of site energies in the atomic sites.

For all logic gate operations we fix AB flux φ at φ0/2 i.e., 0.5 in our chosen unit system.

The common set of values of the other parameters used here are as follows. τS = τD = 0.5

(weak-coupling limit), where τS and τD are the hopping integrals of a ring to the source and

drain, respectively; ǫ0 = 0 and v = 4 (parameters for the electrodes) and EF = 0.
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A. OR Gate

1. The model

Let us start with OR gate response. The schematic view a mesoscopic ring that can

be used as an OR gate is shown in Fig. 7. The ring, penetrated by an AB flux φ, is

symmetrically coupled (upper and lower arms have equal number of lattice points) to two

semi-infinite 1D non-magnetic metallic electrodes, namely, source and drain. Two atomic

sites a and b in upper arm of the ring are subject to two external gate voltages Va and Vb,

DrainSource

Φ

V Va b

a b

FIG. 7: A mesoscopic ring with total number of atomic sites N = 16 (filled red circles), threaded

by a magnetic flux φ, is attached to 1D metallic electrodes, viz, source and drain. The atoms a

and b are subject to the gate voltages Va and Vb respectively, those are variable.

respectively, and these are treated as two inputs of the OR gate. Within a non-interacting

picture, the tight-binding Hamiltonian of the ring looks in the form,

HR =
∑

i

(ǫi0 + Vaδia + Vbδib) c
†
ici +

∑

<ij>

t
(

c†icje
iθ + c†jcie

−iθ
)

. (12)

In this Hamiltonian ǫi0’s are the site energies for all the sites i except the sites i = a and b

where the gate voltages Va and Vb are applied, those are variable. These gate voltages can

be incorporated through the site energies as expressed in the above Hamiltonian. The phase

factor θ = 2πφ/Nφ0 comes due to the flux φ threaded by the ring, where N corresponds

to the total number of atomic sites in the ring. All the other parameters have identical

meaning as described earlier. In our numerical calculations, the on-site energy ǫi0 is taken

as 0 for all the sites i, except the sites i = a and b where the site energies are taken as Va

and Vb, respectively, and the nearest-neighbor hopping strength t in the ring is set at 3.

Quite interestingly we observe that, at φ = φ0/2 a high output current (1) (in the logical

sense) appears if one or both the inputs to the gate are high (1), while if neither input is high
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(1), a low output current (0) appears. This phenomenon is the so-called OR gate response

and here we address it by studying conductance-energy and current-voltage characteristics

as functions of magnetic flux and external gate voltages [85].

2. Logical operation

As illustrative examples, in Fig. 8 we display conductance-energy (g-E) characteristics for

a mesoscopic ring considering N = 16 in the limit of weak ring-to-electrode coupling, where

FIG. 8: g-E characteristics for a mesoscopic ring with N = 16 and φ = 0.5 in the weak-coupling

limit. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and (d) Va = Vb = 2.

(a), (b), (c) and (d) correspond to the results for the four different cases of gate voltages Va

and Vb. In the particular case when Va = Vb = 0 i.e., both inputs are low (0), conductance

shows the value 0 in the entire energy range (Fig. 8(a)). It indicates that electron cannot

conduct from the source to drain across the ring. While, for the other three cases i.e.,

Va = 2 and Vb = 0 (Fig. 8(b)), Va = 0 and Vb = 2 (Fig. 8(c)) and Va = Vb = 2 (Fig. 8(d)),

conductance shows fine resonant peaks for some particular energies associated with energy

eigenvalues of the ring. Thus, in all these three cases, electron can conduct through the

ring. From Fig. 8(d) it is observed that at resonances, conductance g approaches the value

2, and hence, transmission probability T goes to unity. On the other hand, it decays from 1

for the cases where any one of the two gate voltages is high and other is low (Figs. 8(b) and

(c)). Now we interpret the dependences of two gate voltages in these four different cases.
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The probability amplitude of getting an electron across the ring depends on the quantum

interference of electronic waves passing through two arms of the ring. For symmetrically

attached ring i.e., when two arms of the ring are identical to each other, the probability

amplitude becomes exactly zero (T = 0) at the typical flux φ = φ0/2. This is due to the
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FIG. 9: I-V characteristics for a mesoscopic ring with N = 16 and φ = 0.5 in the weak-coupling

limit. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and (d) Va = Vb = 2.

result of quantum interference among the waves passing through different arms of the ring,

which can be obtained by a simple mathematical calculation. Thus for the cases when

both the two inputs (Va and Vb) are zero (low), the arms of the ring become identical, and

therefore, transmission probability drops to zero. On the other hand, for the other three

cases symmetry between the two arms is broken when either the atom a or b or the both

are subject to the gate voltages Va and Vb, and therefore, the non-zero value of transmission

probability is achieved which reveals electron conduction across the ring. The reduction of

transmission probability for the cases when any one of the two gates is high and other is low

compared to the case where both are high is also due to the quantum interference effect.

Thus we can predict that electron conduction takes place across the ring if any one or both

the inputs to the gate are high, while if both are low, conduction is no longer possible. This

feature clearly demonstrates the OR gate behavior.

Following the above conductance-energy spectra now we describe the current-voltage

characteristics. In Fig. 9 we display I-V curves for a mesoscopic ring with N = 16. For the

case when both inputs are zero, the current I is zero (see Fig. 9(a)) for the entire bias voltage
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V . This feature is clearly visible from the conductance spectrum, Fig. 8(a), since current

is computed from integration procedure of the transmission function T . In the other three

TABLE I: OR gate behavior in the limit of weak-coupling. Current I is computed at the bias

voltage 6.02.

Input-I (Va) Input-II (Vb) Current (I)

0 0 0

2 0 0.164

0 2 0.164

2 2 0.193

cases, a high output current is obtained those are clearly presented in Figs. 9(b)-(d). The

current exhibits staircase-like structure with fine steps as a function of applied bias voltage

following the g-E spectrum. In addition, it is also important to note that, non-zero value of

the current appears beyond a finite value of V , the so-called threshold voltage (Vth). This

Vth can be controlled by tuning the size (N) of the ring. From these I-V characteristics, OR

gate response is understood very easily.

To make it much clear, in Table I, we show a quantitative estimate of typical current

amplitude determined at the bias voltage V = 6.02. It shows that when any one of the

two gates is high and other is low, current gets the value 0.164, and for the case when both

the inputs are high, it (I) achieves the value 0.193. While, for the case when both the two

inputs are low (Va = Vb = 0), current becomes exactly zero. These results clearly manifest

the OR gate response in a mesoscopic ring.

B. AND Gate

1. The model

To design an AND logic gate we use two identical quantum rings those are directly coupled

to each other via a single bond. The schematic view of the double quantum ring that can

be used as an AND gate is presented in Fig. 10, where individual rings are penetrated by an
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AB flux φ. The double quantum ring is then attached symmetrically to two semi-infinite 1D

metallic electrodes, namely, source and drain. Two gate electrodes, viz, gate-a and gate-b,

are placed below the lower arms of the two rings, respectively, and they are ideally isolated

from the rings. The atomic sites a and b in lower arms of the two rings are subject to

gate voltages Va and Vb via the gate electrodes gate-a and gate-b, respectively, and they are

treated as two inputs of the AND gate. In the present scheme, we consider that the gate

voltages each operate on the atomic sites nearest to the plates only. While, in complicated

Φ Φ

Gate−a

Source Drain

a b

Gate−b

βα

FIG. 10: Scheme of connections with the batteries for the operation of an AND gate. A double

quantum ring is attached to two semi-infinite 1D metallic electrodes, namely, source and drain.

The gate voltages Va and Vb, those are variable, are applied in the atomic sites a and b via the gate

electrodes, gate-a and gate-b, respectively. The source and gate voltages are applied with respect

to the drain.

geometric models, the effect must be taken into account for the other dots, though the effect

becomes too small. The actual scheme of connections with the batteries for the operation of

the AND gate is clearly presented in the figure (Fig. 10), where the source and gate voltages

are applied with respect to the drain. The model quantum system is described in a similar

way as prescribed in Eq. 12. We will show that, at the typical flux φ = φ0/2, a high output

current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1),

while if neither or only one input to the gate is high (1), a low output current (0) results.

It is the so-called AND gate response and we investigate it by studying conductance-energy

and current-voltage characteristics [86].
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2. Logical operation

In Fig. 11 we plot g-E spectra for a double quantum ring considering M = 16 (M = 2N ,

total number of atomic sites in the double quantum ring, since each ring contains N atomic

sites) in the limit of weak-coupling, where (a), (b), (c) and (d) correspond to the results

for four different choices of the gate voltages Va and Vb, respectively. When both the two

inputs Va and Vb are identical to zero i.e., both are low, conductance g becomes exactly

zero for the entire energy range (see Fig. 11(a)). A similar response is also observed for the

other two cases where anyone of the two inputs (Va and Vb) to the gate is high and other
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FIG. 11: Conductance g as a function of energy E for a double quantum ring with M = 16 and

φ = 0.5 in the limit of weak-coupling. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and

Vb = 2 and (d) Va = Vb = 2.

one is low. The results are shown in Figs. 11(b) and (c), respectively. Thus for all these

three cases (Figs. 11(a)-(c)), the double quantum ring does not allow to pass an electron

from the source to drain. The conduction of electron through the bridge system is allowed

only when both the two inputs to the gate are high i.e., Va = Vb = 2. The response is

given in Fig. 11(d), and it is observed that for some particular energies, associated with

eigenenergies of the double quantum ring, conductance exhibits fine resonant peaks. Now

we try to figure out the dependences of gate voltages on electron transport in these four

different cases. The probability amplitude of getting an electron from the source to drain

across the double quantum ring depends on the combined effect of quantum interferences of
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electronic waves passing through upper and lower arms of the two rings. For a symmetrically

connected ring (length of the two arms of the ring are identical to each other) which is

threaded by a magnetic flux φ, the probability amplitude of getting an electron across the

ring becomes exactly zero (T = 0) at the typical flux, φ = φ0/2. This is due to the result

of quantum interference among the two waves in two arms of the ring, which can be shown

through few simple mathematical steps. Thus for the particular case when both inputs to
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FIG. 12: I-V characteristics for a double quantum ring with M = 16 and φ = 0.5 in the weak-

coupling limit. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and (d) Va = Vb = 2.

the gate are low (0), the upper and lower arms of the two rings become exactly identical,

and accordingly, transmission probability vanishes. The similar response i.e., vanishing

transmission probability, is also achieved for the two other cases (Va = 2, Vb = 0 and Va = 0,

Vb = 2), where the symmetry is broken only in one ring out of these two by applying a gate

voltage either in the site a or in b, preserving the symmetry in the other ring. The reason

is that, when anyone of the two gates (Va and Vb) is non-zero, symmetry between the upper

and lower arms is broken only in one ring which provides non-zero transmission probability

across the ring. While, for the other ring where no gate voltage is applied, symmetry between

the two arms becomes preserved which gives zero transmission probability. Accordingly, the

combined effect provides vanishing transmission probability across the bridge, as the rings

are coupled to each other. The non-zero value of transmission probability is achieved only

when the symmetries of both the two rings are identically broken. This can be done by

applying gate voltages in both the sites a and b of the two rings. Thus for the particular

23



case when both the two inputs are high i.e., Va = Vb = 2, non-zero value of the transmission

probability appears. This feature clearly demonstrates the AND gate behavior.

Now we go for the current-voltage characteristics to reveal AND gate response in a double

quantum ring. As representative examples, in Fig. 12 we plot the current I as a function

of applied bias voltage V for a double quantum ring considering M = 16 in the limit of

weak-coupling, where (a), (b), (c) and (d) represent the results for four different cases of the

two gate voltages Va and Vb. For the cases when either both the two inputs to the gate are

TABLE II: AND gate response in the weak-coupling limit. Current I is computed at the bias

voltage 6.02.

Input-I (Va) Input-II (Vb) Current (I)

0 0 0

2 0 0

0 2 0

2 2 0.346

low (Va = Vb = 0), or anyone of the two inputs is high and other is low (Va = 2, Vb = 0 or

Va = 0, Vb = 2), current is exactly zero for the entire range of bias voltage. The results are

shown in Figs. 12(a)-(c), and, the vanishing behavior of current in these three cases can be

clearly understood from the conductance spectra Figs. 11(a)-(c). The non-vanishing current

amplitude is observed only for the typical case where both the two inputs to the gate are

high i.e., Va = Vb = 2. The result is shown in Fig. 12(d). From this current-voltage curve we

see that the non-zero value of the current appears beyond a finite value of V , the so-called

threshold voltage (Vth). This Vth can be controlled by tuning the size (N) of the two rings.

From these results, the behavior of AND gate response is clearly visible.

In the same fashion as earlier here we also make a quantitative estimate for the typical

current amplitude as given in Table II, where the typical current amplitude is measured at

the bias voltage V = 6.02. It shows I = 0.346 only when two inputs to the gate are high

(Va = Vb = 2), while for the other three cases when either Va = Vb = 0 or Va = 2, Vb = 0

or Va = 0, Vb = 2, current gets the value 0. It verifies the AND gate behavior in a double

quantum ring.
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C. NOT Gate

1. The model

Next we discuss NOT gate operation in a quantum ring [87]. Schematic view for the

operation of a NOT gate using a single mesoscopic ring is shown in Fig. 13, where the ring

is attached symmetrically to two semi-infinite 1D metallic electrodes, viz, source and drain,

and it is subject to an AB flux φ. A gate voltage Va, taken as input voltage of the NOT gate,

DrainSource

V

V

a

Φ

a

α

α

FIG. 13: Schematic representation for the operation of a NOT gate. The atomic sites a and α are

subject to the voltages Va and Vα, respectively, those are variable.

is applied to the atomic site a in upper arm of the ring. While, an additional gate voltage

Vα is applied to the site α in lower arm of the ring. Keeping Vα to a fixed value, we change

Va properly to achieve the NOT gate operation. The model quantum system is illustrated

in the same way as given in Eq. 12. We will verify that, at the typical flux φ = φ0/2, a high

output current (1) (in the logical sense) appears if the input to the gate is low (0), while a

low output current (0) appears when the input to the gate is high (1). This phenomenon is

the so-called NOT gate behavior, and we will explore it following the same prescription as

earlier.

2. Logical operation

To describe NOT gate operation let us start with conductance-energy characteristics. In

Fig. 14 we show the variation of conductance as a function of injecting electron energy, in

the limit of weak-coupling, for a mesoscopic ring with N = 8 and Vα = 2. Figures 14(a)
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and (b) correspond to the results for the input voltages Va = 0 and Va = 2, respectively.

For the particular case when the input voltage Va = 2 i.e., the input is high, conductance

g vanishes (Fig. 14(b)) in the complete energy range. This indicates that conduction of

FIG. 14: g-E curves in the weak-coupling limit for a mesoscopic ring with N = 8, Vα = 2 and

φ = 0.5. (a) Va = 0 and (b) Va = 2.

electron from the source to drain through the ring is not possible. The situation becomes

completely different for the case when the input to the gate is zero (Va = 0). The result is

shown in Fig. 14(a), where conductance shows sharp resonant peaks for some fixed energies

associated with energy eigenvalues of the ring. This reveals electron conduction across the

ring. Now we focus the dependences of gate voltages on electron transport for two different

cases of the input voltage. For the case when the input to the gate is equal to 2 i.e., Va = 2,

the upper and lower arms of the ring become exactly similar. This is because the potential

Vα is also set to 2. Therefore, transmission probability drops to zero at the typical flux φ0/2,

as discussed earlier. Now if the input voltage Va is different from the potential applied in

the atomic site α, then the two arms are not identical with each other and transmission

probability will not vanish. Thus, to get zero transmission probability when the input is

high, we should tune Vα properly, observing the input potential and vice versa. On the

other hand, due to the breaking of symmetry between the two arms, non-zero value of the

26



transmission probability is achieved in the particular case where the input voltage is zero

(Va = 0), which reveals electron conduction across the ring. From these results we can

emphasize that electron conduction takes place through the ring if the input to the gate is
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FIG. 15: I-V curves in the weak-coupling limit for a mesoscopic ring with N = 8, Vα = 2 and

φ = 0.5. (a) Va = 0 and (b) Va = 2.

zero, while if the input is high, conduction is no longer possible. This aspect clearly describe

the NOT gate behavior.

To illustrate the current-voltage characteristics now we concentrate on the results given

in Fig. 15. The currents are drawn as a function of applied bias voltage for a mesoscopic

ring with N = 8 and Vα = 2 in the weak-coupling limit, where (a) and (b) represent the

results for two choices of the input signal Va. Clearly we see that, when the input to the

gate is identical to 2 (high), current becomes exactly zero (see Fig. 15(b)) for the entire bias

voltage V . This feature is understood from the conductance spectrum, Fig. 14(b). On the

other hand, a non-zero value of current is obtained when the input voltage Va = 0, as given

in Fig. 15(a). The current becomes non-zero beyond a threshold voltage Vth which is tunable

depending on the ring size and ring-electrode coupling strength. From these current-voltage

curves it is clear that a high output current appears only if the input to the gate is low,

while for high input, current doesn’t appear. It justifies NOT gate response in the quantum
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ring.

In a similar way, as we have studied earlier in other logical operations, in Table III we

make a quantitative measurement of the typical current amplitude for the quantum ring.

The current amplitude is computed at the bias voltage V = 6.02. It shows that, when the

input to the gate is zero, current gets the value 0.378. While, current becomes exactly zero

TABLE III: NOT gate behavior in the limit of weak-coupling. Current I is computed at the bias

voltage 6.02.

Input (Va) Current (I)

0 0.378

2 0

when the input voltage Va = 2. Thus the NOT gate operation by using a quantum ring is

established.

Up to now we have studied three primary logic gate operations using one (OR and NOT)

and two (AND) mesoscopic rings. In the forthcoming sub-sections we will explore the other

four combinatorial logic gate operations using such one or two rings.

D. NOR Gate

1. The model

We begin by referring to Fig. 16. A double quantum ring, where each ring is threaded by

a magnetic flux φ, is sandwiched symmetrically between two semi-infinite one-dimensional

(1D) metallic electrodes. The atomic sites a and b in lower arms of the two rings are subject

to gate voltages Va and Vb through the gate electrodes gate-a and gate-b, respectively. These

gate voltages are variable and treated as two inputs of the NOR gate. In a similar way we

also apply two other gate voltages Vc and Vd, those are not varying, in the atomic sites c and

d in upper arms of the two rings via the gate electrodes gate-c and gate-d, respectively. All

these gate electrodes are ideally isolated from the rings, and here we assume that the gate

voltages each operate on the atomic sites nearest to the plates only. While, in complicated
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geometric models, the effect must be taken into account for other atomic sites, though

the effect becomes too small. The actual scheme of connections with the batteries for the

Φ Φ

Gate−a

Source Drain

a b

Gate−b

c d

Gate−dGate−c

FIG. 16: Scheme of connections with the batteries for the operation of a NOR gate.

operation of a NOR gate is clearly presented in the figure (Fig. 16), where the source and gate

voltages are applied with respect to the drain. The tight-binding Hamiltonian of the model

quantum system is described in a similar fashion as given in Eq. 12. Keeping Vc and Vd to

some specific values, we regulate Va and Vb properly to achieve NOR gate operation. Quite

nicely we establish that, at the typical AB flux φ = φ0/2, a high output current (1) (in the

logical sense) appears if both inputs to the gate are low (0), while if one or both are high (1), a

low output current (0) results. This phenomenon is the so-called NOR gate response and we

will illustrate it by describing conductance-energy and current-voltage characteristics [88].

2. Logical operation

As representative examples, in Fig. 17 we display the variation of conductance g as a

function of injecting electron energy E for a double quantum ring with M = 16 (M = 2N ,

total number of atomic sites in the double quantum ring, since each ring contains N atomic

sites) in the weak-coupling limit, where (a), (b), (c) and (d) represent the results for four

different cases of the gate voltages Va and Vb, respectively. Quite interestingly from these

spectra we observe that, for the case when both the two inputs Va and Vb are identical to
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2 i.e., both are high, conductance becomes exactly zero for the full range of energy E (see

Fig. 17(d)). An exactly similar response is also visible for other two cases where anyone

of the two inputs is high and other is low. The results are shown in Figs. 17(b) and (c),

respectively. Hence, for all these three cases (Figs. 17(b)-(d)), no electron conduction takes

place from the source to drain through the double quantum ring. The electron conduction

through the bridge system is allowed only for the typical case where both the inputs to the

FIG. 17: g-E spectra for a double quantum ring with M = 16, Vc = Vd = 2 and φ = 0.5 in the

limit of weak-coupling. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and (d)

Va = Vb = 2.

gates are low i.e., Va = Vb = 0. The spectrum is given in Fig. 17(a). It is noticed that, for

some particular energies conductance exhibits sharp resonant peaks associated with energy

levels of the double quantum ring. Now we try to explain the roles of the gate voltages

on electron transport in these four different cases. The probability amplitude of getting an

electron from the source to drain across the double quantum ring depends on the combined

effect of quantum interferences of the electronic waves passing through upper and lower

arms of the two rings. For the particular case when both the two inputs to the gate are high

i.e., Va = Vb = 2, upper and lower arms of the two rings become exactly identical since the

gate voltages Vc and Vd in the upper arms are also fixed at the value 2. This provides the

vanishing transmission probability. If the input voltages Va and Vb are different from the

potential applied in the atomic sites c and d, then the upper and lower arms of the two rings

are no longer identical to each other and transmission probability will not vanish. Thus,
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to get zero transmission probability when the inputs are high, we should tune Vc and Vd

properly, observing the input potentials and vice versa. A similar behavior is also noticed

for the other two cases (Va = 2, Vb = 0 and Va = 0, Vb = 2), where symmetry is broken in

only one ring out of these two by making the gate voltage either in the site b or in a to zero,

maintaining the symmetry in other ring. The reason is that, when anyone of the two gates

(Va and Vb) becomes zero, symmetry between the upper and lower arms is broken only in one

ring which provides non-zero transmission probability across the ring. While, for the other
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FIG. 18: Current I as a function of applied bias voltage V for a double quantum ring with M = 16,

Vc = Vd = 2 and φ = 0.5 in the weak-coupling limit. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c)

Va = 0 and Vb = 2 and (d) Va = Vb = 2.

ring where the gate voltage is applied, symmetry between the two arms becomes preserved

which gives zero transmission probability. Accordingly, the combined effect of these two

rings provides vanishing transmission probability across the bridge, as the rings are coupled

to each other. The non-zero value of transmission probability appears only when symmetries

of both the two rings are identically broken, and it is available for the particular case when

two inputs to the gate are low i.e., Va = Vb = 0. This feature clearly demonstrates the NOR

gate behavior.

To support NOR gate operation now we focus our mind on the I-V characteristics. As

illustrative examples, in Fig. 18 we show the variation of current I as a function of applied

bias voltage V for a double quantum ring with M = 16 in the limit of weak-coupling,
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where (a), (b), (c) and (d) correspond to the results for the different cases of two input

voltages, respectively. For the cases when either both the two inputs to the gate are high

(Va = Vb = 2), or anyone of the two inputs is high and other is low (Va = 2, Vb = 0 or

Va = 0, Vb = 2), current drops exactly to zero for the whole range of bias voltage. The

results are shown in Figs. 18(b)-(d), and, the vanishing behavior of current in these three

different cases can be clearly understood from conductance spectra given in Figs. 17(b)-(d).

TABLE IV: NOR gate response in the limit of weak-coupling. Current I is computed at the bias

voltage 6.02.

Input-I (Va) Input-II (Vb) Current (I)

0 0 0.346

2 0 0

0 2 0

2 2 0

The finite value of current is observed only for the typical case where both the two inputs

to the gate are low i.e., Va = Vb = 0. The result is shown in Fig. 18(a). At much low bias

voltage, current is almost zero and it shows a finite value beyond a threshold voltage Vth

depending on the ring size ans ring-to-electrode coupling strength. These features establish

the NOR gate response.

For the sake of our completeness, in Table IV we do a quantitative measurement of the

typical current amplitude, determined at V = 6.02, for four different choices of two input

signals in the limit of weak-coupling. Our measurement shows that current gets a finite

value (0.346) only when both inputs are low (0). On the other hand, current becomes zero

for all other cases i.e., if one or both inputs are high. Therefore, it is manifested that a

double quantum ring can be used as a NOR gate.
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E. XOR Gate

1. The model

As a follow up, now we address XOR gate response which is designed by using a single

mesoscopic ring [89]. The ring, penetrated by an AB flux φ, is attached symmetrically to

Φ

a

b

Source Drain

Gate−a

Gate−b

FIG. 19: Scheme of connections with the batteries for the operation of an XOR gate.

two semi-infinite 1D non-magnetic metallic electrodes, namely, source and drain. The ring

is placed between two gate electrodes, viz, gate-a and gate-b. These gate electrodes are

ideally isolated from the ring and can be regarded as two parallel plates of a capacitor. In

our present scheme we assume that the gate voltages each operate on the dots nearest to the

plates only. While, in complicated geometric models, the effect must be taken into account

for the other dots, though the effect becomes too small. The dots a and b in two arms of the

ring are subject to gate voltages Va and Vb, respectively, and these are treated as two inputs

of the XOR gate. The actual scheme of connections with the batteries for the operation of

the XOR gate is clearly presented in the figure (Fig. 19), where the source and gate voltages

are applied with respect to the drain. We describe the model quantum system through a

similar kind of tight-binding Hamiltonian as presented in Eq. 12. Very nicely we follow that,

at the typical AB flux φ = φ0/2, a high output current (1) (in the logical sense) appears if

one, and only one, of the inputs to the gate is high (1), while if both inputs are low (0) or

both are high (1), a low output current (0) results. This is the so-called XOR gate behavior

and we will emphasize it according to our earlier prescription.
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2. Logical operation

Let us start with conductance-energy characteristics given in Fig. 20. The variations of

conductances are shown as a function of injecting electron energy E for a quantum ring

considering N = 8 in the weak ring-to-electrode coupling limit, where four different figures

correspond to the results for different choices of two input signals Va and Vb. When both

the two inputs Va and Vb are identical to zero i.e., both inputs are low, conductance g

becomes exactly zero (Fig. 20(a)) for all energies. This reveals that electron cannot conduct

through the ring. A similar response is also observed when both the two inputs are high i.e.,

FIG. 20: Conductance g as a function of the energy E for a mesoscopic ring with N = 8 and

φ = 0.5 in the limit of weak-coupling. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and

Vb = 2 and (d) Va = Vb = 2.

Va = Vb = 2, and in this case also the ring does not allow to pass an electron from the source

to drain (Fig. 20(d)). On the other hand, for the cases where any one of the two inputs

is high and other is low i.e., either Va = 2 and Vb = 0 (Fig. 20(b)) or Va = 0 and Vb = 2

(Fig. 20(c)), conductance exhibits fine resonant peaks for some particular energies associated

with energy levels of the ring. Thus for both these two cases electron conduction takes place

across the ring. Now we justify the dependences of gate voltages on electron transport for

these four different cases. For the cases when both inputs (Va and Vb) are either low or high,

the upper and lower arms of the ring are exactly similar in nature, and therefore, at φ = φ0/2

transmission probability drops exactly to zero. On the other hand, for the other two cases
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symmetry between the arms of the ring is broken by applying a gate voltage either in the

atom a or b, and therefore, the non-zero value of transmission probability is achieved which

reveals electron conduction across the ring. Thus we can predict that electron conduction

takes place across the ring if one, and only one, of the inputs to the gate is high, while if
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FIG. 21: Current I as a function of bias voltage V for a mesoscopic ring with N = 8 and φ = 0.5

in the limit of weak-coupling. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and

(d) Va = Vb = 2.

both inputs are low or both are high, conduction is no longer possible. This phenomenon

illustrates the traditional XOR gate behavior.

With these conductance-energy spectra (Fig. 20), now we focus our attention on current-

voltage characteristics. As illustrative examples, in Fig. 21 we show current-voltage charac-

teristics for a mesoscopic ring with N = 8 in the limit of weak-coupling. For the cases when

both the two inputs are identical to each other, either low (Fig. 21(a)) or high (Fig. 21(d)),

current becomes zero for the entire bias voltage. This behavior is clearly understood from

the conductance spectra, Figs. 20(a) and (d). For the other two cases where only one of

the two inputs is high and other is low, a high output current is obtained which are clearly

described in Figs. 21(b) and (c). The finite value of current appears when the applied bias

voltage crosses a limiting value, the so-called threshold bias voltage Vth. Thus to get a

current across the ring, we have to take care about the threshold voltage. These results

implement the XOR gate response in a mesoscopic ring.
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TABLE V: XOR gate behavior in the limit of weak-coupling. Current I is computed at the bias

voltage 6.02.

Input-I (Va) Input-II (Vb) Current (I)

0 0 0

2 0 0.378

0 2 0.378

2 2 0

To make an end of the discussion for XOR gate response in a more compact way in Table V

we make a quantitative measurement of typical current amplitude for the four different cases

of two input signals. The current amplitudes are computed at the bias voltage V = 6.02.

It is observed that current becomes zero when both inputs are either low or high. While,

it (current) reaches the value 0.378 when we set one input as high and other as low. These

studies suggest that a mesoscopic ring can be used as a XOR gate.

F. XNOR Gate

1. The model

As a consequence now we will explore XNOR gate response and we design this logic

gate by means of a single mesoscopic ring [90]. The ring, threaded by an AB flux φ,

is attached symmetrically (upper and lower arms have equal number of lattice points) to

two semi-infinite one-dimensional (1D) metallic electrodes. The model quantum system is

schematically shown in Fig. 22. Two gate voltages Va and Vb, taken as two inputs of the

XNOR gate, are applied to the atomic sites a and b, respectively, in upper arm of the

ring. While, an additional gate voltage Vα is applied to the site α in lower arm of the ring.

These three voltages are variable. Our quantum system is described by a similar kind of

Hamiltonian given in Eq. 12. We show that, at the typical magnetic flux φ = φ0/2 a high

output current (1) (in the logical sense) appears if both the two inputs to the gate are the

same, while if one but not both inputs are high (1), a low output current (0) results. This
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FIG. 22: Schematic view for the operation of a XNOR gate. The atomic sites a, b and α are

subject to the voltages Va, Vb and Vα, respectively, those are variable.

logical operation is the so-called XNOR gate behavior and we will focus it by studying

conductance-energy spectrum and current-voltage characteristics for a typical mesoscopic

ring.

2. Logical operation

As illustrative examples, in Fig. 23 we describe conductance-energy (g-E) characteristics

for a mesoscopic ring with N = 8 and Vα = 2 in the limit of weak-coupling, where (a), (b),

(c) and (d) correspond to the results for different cases of the input voltages, Va and Vb. For

the particular cases where anyone of the two inputs is high and other is low i.e., both inputs

are not same, conductance becomes exactly zero (Figs. 23(b) and (c)) for the whole energy

range. This predicts that for these two cases, electron cannot conduct through the ring.

The situation becomes completely different for the cases when both the inputs to the gate

are same, either low (Va = Vb = 0) or high (Va = Vb = 2). In these two cases, conductance

exhibits fine resonant peaks for some particular energies (Figs. 23(a) and (d)), which reveals

electron conduction across the ring. At the resonant energies, g does not get the value 2, and

therefore, transmission probability T becomes less than unity, since the expression g = 2T is

satisfied from the Landauer conductance formula (see Eq. 1 with e = h = 1). This reduction

of transmission amplitude is due to the effect of quantum interference. Now we discuss

the effect of gate voltages on electron transport for these four different cases of the input

voltages. For the cases when anyone of the two inputs to the gate is identical to 2 and other
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FIG. 23: g-E curves in the weak-coupling limit for a mesoscopic ring with N = 8, Vα = 2 and

φ = 0.5. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and (d) Va = Vb = 2.

one is 0, the upper and lower arms of the ring become exactly similar. This is because the

potential Vα is also set to 2. Accordingly, transmission probability T drops to zero. If the
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FIG. 24: Current I as a function of the bias voltage V for a mesoscopic ring with N = 8, Vα = 2

and φ = 0.5 in the limit of weak-coupling. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and

Vb = 2 and (d) Va = Vb = 2.

high value (2) of anyone of the two gates is different from the potential applied in the atomic

site α, then two arms are not identical with each other and transmission probability will not
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vanish. Thus, to get zero transmission probability when Va is high and Vb is low and vice

versa, we should tune Vα properly, observing the input potential. On the other hand, due

to the breaking of symmetry of the two arms, non-zero value of the transmission probability

is achieved in the particular cases when both inputs to the gate are same, which reveals

electron conduction across the ring. From these results we can emphasize that electron

conduction through the ring takes place if both the two inputs to the gate are the same (low

or high), while if one but not both inputs are high, conduction is no longer possible. This

aspect clearly describes the XNOR gate behavior.

As a continuation now we follow current-voltage characteristics to reveal the XNOR

gate response. As representative examples, in Fig. 24 we plot I-V characteristics for a

mesoscopic ring with N = 8 and Vα = 2, in the limit of weak-coupling, where (a), (b), (c)

and (d) represent the results for four different cases of the two input voltages. From these

characteristics it is clearly observed that for the cases when one input is high and other

is low, current is exactly zero (see Figs. 24(b) and (c)) for the entire bias voltage V . This

TABLE VI: XNOR gate behavior in the limit of weak-coupling. Current I is computed at the bias

voltage 6.02.

Input-I (Va) Input-II (Vb) Current (I)

0 0 0.194

2 0 0

0 2 0

2 2 0.157

phenomenon can be understood from the conductance spectra, Figs. 23(b) and (c). The non-

zero value of current appears only when both the two inputs are identical to zero (Fig. 24(a))

or high (Fig. 24(d)). Here also the current appears beyond a finite threshold voltage Vth

which is regulated under the variation of system size N and ring-electrode coupling strength.

These I-V curves justify the XNOR gate response in a mesoscopic ring.

To be more precise, in Table VI we make a quantitative measurement of typical current

amplitude for the different choices of two input signals in the weak ring-to-electrode coupling.

The typical current amplitude is computed at the bias voltage V = 6.02. It is noticed that
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current gets the value 0.194 when both inputs are low (0), while it becomes 0.157 when both

inputs to the gate are high (2). On the other hand for all other cases, current is always zero.

These results emphasize that a mesoscopic ring can be used to design a XNOR gate.

G. NAND Gate

1. The model

At the end, we demonstrate NAND gate response and we design this logic gate with

the help of a single mesoscopic ring. A mesoscopic ring, threaded by a magnetic flux φ,

is attached symmetrically (upper and lower arms have equal number of lattice points) to

two semi-infinite one-dimensional (1D) metallic electrodes. The schematic view of the ring

DrainSource

Φ

Va

ba

Vb

V Vα β

α
β

FIG. 25: Schematic representation for the operation of a NAND gate. The atoms a, b, α and β

are subject to the voltages Va, Vb, Vα and Vβ , respectively, those are variable.

that can be used to design a NAND gate is shown in Fig. 25. In upper arm of the ring

two atoms a and b are subject to gate voltages Va and Vb, respectively, those are treated as

two inputs of the NAND gate. On the other hand, two additional voltages Vα and Vβ are

applied in the atoms α and β, respectively, in lower arm of the ring. The model quantum

system is expressed by a similar kind of tight-binding Hamiltonian as prescribed in Eq. 12.

Quite interestingly we notice that, at the typical AB flux φ = φ0/2 a high output current

(1) (in the logical sense) appears if one or both inputs to the gate are low (0), while if both

inputs to the gate are high (1), a low output current (0) results. This characteristic is the

so-called NAND gate response and we will justify it by describing conductance-energy and

current-voltage spectra [91].
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2. Logical operation

Let us begin with the results given in Fig. 26. Here we show the variation of conductance

(g) as a function of injecting electron energy (E) in the limit of weak-coupling for a meso-

scopic ring with N = 8 and Vα = Vβ = 2, where (a), (b), (c) and (d) correspond to the results
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FIG. 26: g-E curves in the weak-coupling limit for a mesoscopic ring with N = 8, Vα = Vβ = 2

and φ = 0.5. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and (d) Va = Vb = 2.

for the different values of Va and Vb. When both the two inputs Va and Vb are identical to 2

i.e., both inputs are high, conductance g becomes exactly zero (Fig. 26(d)) for all energies.

This reveals that electron cannot conduct from the source to drain through the ring. While,

for the cases where anyone or both inputs to the gate are zero (low), conductance gives

fine resonant peaks for some particular energies associated with energy levels of the ring, as

shown in Figs. 26(a), (b) and (c), respectively. Thus, in all these three cases, electron can

conduct through the ring. From Fig. 26(a) it is observed that, at resonances g reaches the

value 2 (T = 1), but the height of resonant peaks gets down (T < 1) for the cases where

anyone of the two inputs is high and other is low (Figs. 26(b) and (c)). Now we illustrate

the dependences of gate voltages on electron transport for these four different cases. For

the case when both inputs to the gate are identical to 2 i.e., Va = Vb = 2, the upper and

lower arms of the ring become exactly similar. This is due to the fact that the potentials Vα

and Vβ are also fixed to 2. Therefore, in this particular case transmission probability drops

to zero at φ = φ0/2. If the two inputs Va and Vb are different from the potentials applied
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in the sites α and β, then two arms are no longer identical to each other and transmission

probability will not vanish. Hence, to get zero transmission probability when both inputs

are high, we should tune Vα and Vβ properly, observing the input potentials and vice versa.

On the other hand, due to breaking of the symmetry of the two arms (i.e., two arms are

no longer identical to each other) in the other three cases by making anyone or both inputs
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FIG. 27: I-V curves in the weak-coupling limit for a mesoscopic ring with N = 8, Vα = Vβ = 2

and φ = 0.5. (a) Va = Vb = 0, (b) Va = 2 and Vb = 0, (c) Va = 0 and Vb = 2 and (d) Va = Vb = 2.

to the gate are zero (low), the non-zero value of transmission probability is achieved which

reveals electron conduction across the ring. The reduction of transmission probability from

unity for the cases where any one of the two gates is high and other is low compared to the

case where both the gates are low is solely due to the quantum interference effect. Thus it

can be emphasized that electron conduction takes place across the ring if any one or both

inputs to the gate are low, while if both are high, conduction is not at all possible. These

results justify the traditional NAND gate operation.

In the same fashion, now we focus on the current-voltage characteristics. As our illus-

trative purposes, in Fig. 27 we present the variation of current I in terms of applied bias

voltage V for a typical quantum ring with N = 8 in the limit of weak-coupling, considering

Vα = Vβ = 2, where (a)-(d) represent the results for different cases of two input signals.

When both inputs are high i.e, Va = Vb = 2 current becomes zero for the entire range

of applied bias voltage (Fig. 27(d)), following the conductance-energy spectrum given in

Fig. 26(d). For all other three choices of two inputs, finite contribution in the current is
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available. The results are shown in Figs. 27(a)-(c). From these three current-voltage spectra,

it is observed that for a fixed bias voltage current amplitude in the typical case where both

inputs are low (Fig. 27(a)) is much higher than the cases where one input is high and other is

low (Figs. 27(b)-(c)). This is clearly understood from the variations of conductance-energy

spectra studied in the above paragraph. Thus, our present current-voltage characteristics

justify the NAND gate operation in the quantum ring very nicely.

Finally, in Table VII we present a quantitative estimate of the typical current amplitude

for four different cases of two input signals. The typical current amplitudes are measured at

the bias voltage V = 6.02. It provides that current vanishes when both inputs are high (2).

TABLE VII: NAND gate behavior in the limit of weak-coupling. Current I is computed at the

bias voltage 6.02.

Input-I (Va) Input-II (Vb) Current (I)

0 0 0.339

2 0 0.157

0 2 0.157

2 2 0

On the other hand, current gets the value 0.339 as long as both inputs are low (0) and 0.157

when anyone of two inputs is low and other is high. Our results support that a mesoscopic

ring can be utilized as a NAND gate.

To summarize, in this section, we have implemented classical logic gates like OR, AND,

NOT, NOR, XOR, XNOR and NAND using simple mesoscopic rings. A single ring is

used to design OR, NOT, XOR, XNOR and NAND gates, while the rest two gates are

fabricated by using two such rings and in all the cases each ring is penetrated by an AB flux

φ which plays the crucial role for whole logic gate operations. We have used a simple tight-

binding framework to describe the model, where a ring is attached to two semi-infinite one-

dimensional non-magnetic metallic electrodes. Based on a single particle Green’s formalism

all calculations have been done numerically which demonstrate two-terminal conductance

and current through the system. Our theoretical analysis may be useful in fabricating

mesoscopic or nano-scale logic gates.
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Throughout the study of logic gate operations using mesoscopic rings, we have chosen the

rings of two different sizes. In few cases we have considered the ring with 8 atomic sites and

in few cases the number is 16. In our model calculations, these typical numbers (8 or 16) are

chosen only for the sake of simplicity. Though the results presented here change numerically

with ring size (N), but all the basic features remain exactly invariant. To be more specific,

it is important to note that, in real situation experimentally achievable rings have typical

diameters within the range 0.4-0.6 µm. In such a small ring, unrealistically very high

magnetic fields are required to produce a quantum flux. To overcome this situation, Hod et

al. have studied extensively and proposed how to construct nanometer scale devices, based

on Aharonov-Bohm interferometry, those can be operated in moderate magnetic fields [92,

93].

The importance of this study is mainly concerned with (i) simplicity of the geometry and

(ii) smallness of the size.

IV. MULTI-TERMINAL QUANTUM TRANSPORT

Though, to date a lot of theoretical as well as experimental works on two-terminal electron

transport have been done addressing several important issues, but a very few works are

available on multi-terminal quantum systems [94–99] and still it is an open subject to us.

Büttiker [100] first addressed theoretically the electron transport in multi-terminal quantum

systems following the theory of Landauer two-terminal conductance formula.

In this section we investigate multi-terminal quantum transport through a single ben-

zene molecule attached to metallic electrodes. A simple tight-binding model is used to

describe the system and all calculations are done based on the Green’s function formalism.

Here we address numerical results which describe multi-terminal conductances, reflection

probabilities and current-voltage characteristics. Most significantly we observe that, the

molecular system where a benzene molecule is attached to three terminals can be operated

as a transistor, and we call it a molecular transistor [101]. This aspect can be utilized in

designing nano-electronic circuits and our investigation may provide a basic framework to

study electron transport in any complicated multi-terminal quantum system.
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A. Model and synopsis of the theoretical background

Following the prescription of electron transport in two-terminal quantum systems (as

illustrated in section II) we can easily extend our study in a three-terminal quantum system,

where a benzene molecule is attached to three semi-infinite leads, viz, lead-1, lead-2 and lead-

3. The model quantum system is shown in Fig. 28. These leads are coupled to the molecule
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FIG. 28: Three-terminal quantum system where a benzene molecule is attached asymmetrically to

three semi-infinite 1D metallic leads, namely, lead-1, lead-2 and lead-3.

asymmetrically and they are quite analogous to emitter, base and collector as defined in

a traditional macroscopic transistor. The actual scheme of connections with the batteries

for the operation of the molecule as a transistor is depicted in Fig. 29, where the voltages

in the lead-1 and lead-2 are applied with respect to lead-3. In non-interacting picture, the

Hamiltonian of the benzene molecule can be expressed like,

HM =
∑

i

ǫic
†
ici +

∑

<ij>

t
(

c†icj + c†jci

)

(13)

where the symbols have their usual meaning. A similar kind of tight-binding Hamiltonian

is also used to describe the side-attached leads which is parametrized by constant on-site

potential ǫ0 and nearest-neighbor hopping integral v. We use three other parameters τ1,

τ2 and τ3 to describe hopping integrals of the molecule to the lead-1, lead-2 and lead-3,

respectively.
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To calculate conductance in this three-terminal quantum system, we use Büttiker for-

malism, where all leads (current and voltage leads) are treated in the same footing. The

conductance between the terminals, indexed by p and q, can be written by the relation
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FIG. 29: Scheme of connections with the batteries for the operation of the benzene molecule as a

transistor. The voltages in the lead-1 and lead-2 are applied with respect to lead-3.

gpq = (2e2/h) Tpq, where Tpq gives the transmission probability of an electron from the lead-

p to lead-q. Here, reflection probabilities are related to the transmission probabilities by the

equation Rpp +
∑

q(6=p) Tqp = 1, which is obtained from the condition of current conserva-

tion [102].

Finally, for this three-terminal system we can write the current Ip for the lead-p as,

Ip(V ) =
e

π~

∑

q

∞
∫

−∞

Tpq(E) [fp(E)− fq(E)] dE (14)

Here, all the results are computed only at absolute zero temperature. These results are also

valid even for some finite (low) temperatures, since the broadening of energy levels of the

benzene molecule due to its coupling to the leads becomes much larger than that of the

thermal broadening [2, 3]. For the sake of simplicity, we take the unit c = e = h = 1 in our

present calculations.
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B. Numerical results and discussion

To illustrate the results, let us begin our discussion by mentioning the values of different

parameters used for the numerical calculations. In the benzene molecule, on-site energy ǫi

is fixed to 0 for all the sites i and nearest-neighbor hopping strength t is set to 3. While,

for the side-attached leads on-site energy (ǫ0) and nearest-neighbor hopping strength (v) are

chosen as 0 and 4, respectively. The Fermi energy EF is taken as 0. Throughout the study,

we narrate our results for two limiting cases depending on the strength of coupling of the

molecule to leads. Case I: τ1(2,3) << t. It is the so-called weak-coupling limit. For this regime

we choose τ1 = τ2 = τ3 = 0.5. Case II: τ1(2,3) ∼ t. This is the so-called strong-coupling limit.

In this particular limit, we set the values of the parameters as τ1 = τ2 = τ3 = 2.5.

1. Conductance-energy characteristics

In three-terminal molecular system, several anomalous features are observed in

conductance-energy spectra as well as in the variation of reflection probability with en-

ergy E. As representative examples, in Fig. 30 we present the results, where first column

gives the variation of conductance gpq and second column represents the nature of reflection

probability Rpp. From the conductance spectra it is observed that conductances exhibit fine

resonant peaks (red curves) for some particular energies in the limit of weak-coupling, while

they get broadened (blue curves) as long as coupling strength is enhanced to the strong-

coupling limit. The explanation for the broadening of resonant peaks is exactly similar as

described earlier in the case of two-terminal molecular system. A similar effect of molecular

coupling to the side attached leads is also noticed in the variation of reflection probability

versus energy spectra (right column of Fig. 30). Since in this three-terminal molecular sys-

tem leads are connected asymmetrically to the molecule i.e., path length between the leads

are different from each other, all conductance spectra are different in nature. It is also ob-

served that the heights of different conductance peaks are not identical. This is solely due to

the effect of quantum interference among different arms of the molecular ring. Now, in the

variation of reflection probabilities, we also get the complex structure like as conductance

spectra. For this three-terminal system since reflection probability is not related to the

transmission probability simply as in the case of a two-terminal system, it is not necessarily
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FIG. 30: Three-terminal conductance gpq and reflection probability Rpp as a function of energy E

of the benzene molecule. The red and green curves correspond to the results for the weak-coupling

limit, while the blue and reddish yellow lines represent the results for the limit of strong-coupling.

Conductance is measured in unit of e2/h, while the energy is measured in unit of t.

true that Rpp shows picks or dips where gpq has dips or picks. It depends on the combined

effect of Tpq’s.

2. Current-voltage characteristics: Transistor operation

Finally, we describe current-voltage characteristics for this three-terminal molecular sys-

tem and try to illustrate how it can be operated as a transistor.

The current Ip passing through any lead-p is obtained by integration procedure of the

transmission function Tpq (see Eq. (14)), where individual contributions from the other two

leads have to be taken into account. To be more precise, we can write the current expression

for the three-terminal molecular device where one of the terminals serves as a voltage as well
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FIG. 31: Current I1 as a function of V13 (= V1 − V3) for constant V12 (= V1 − V2) for the three-

terminal molecular system in the limit of strong-coupling. The red, magenta, blue and green curves

correspond to V12 = 0.2, 0.4, 0.6 and 0.8, respectively. Current is measured in unit of et/h, and

the bias voltage is measured in unit of t/e.
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FIG. 32: Current I2 as a function of V23 (= V2−V3) for constant V12 for the three-terminal molecular

system in the limit of strong-coupling. The red, magenta, blue and green curves correspond to

V12 = 0.4, 0.8, 1.2 and 1.6, respectively. Current is measured in unit of et/h, and the bias voltage

is measured in unit of t/e.

as a current probe [2] in the form Ip =
∑

q

gpq (Vp − Vq) ≡
∑

q

gpqVpq, where Vpq = (Vp − Vq)

is the voltage difference between the lead-p and lead-q.

In Fig. 31, we plot current I1 in the lead-1 as a function of V13 for constant V12 in the

limit of strong molecular coupling. The red, magenta, blue and green curves correspond to

the currents for V12 = 0.2, 0.4, 0.6 and 0.6, respectively. From the results it is observed that,

for a constant voltage difference between the lead-1 and lead-2, current I1 initially rises to a

large value when V13 starts to increase from zero value, and after that, it (I1) increases very

slowly with the rise of V13 and eventually saturates. On the other hand, for a constant lead-1
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to lead-3 voltage difference, current I1 increases gradually as we increase V12, which is clearly

described from the four different curves in Fig. 31. Quite similar behavior is also observed

in the variation of current I2 as a function of V23 for constant V12. The results are shown

in Fig. 32, where currents are calculated for the strong-coupling limit. The red, magenta,

blue and green lines represent the currents for V12 = 0.4, 0.8, 1.2 and 1.6, respectively.

Comparing the results plotted in Figs. 31 and 32, it is clearly observed that current in the

0 1 2 30.5 1.5 2.5
V23

0.0

3.0

1.5I 2

FIG. 33: Current I2 as a function of V23 for constant I1 for the three-terminal molecular system

in the limit of strong-coupling. The red, green, blue and magenta curves correspond to I1 = 0.09,

0.36, 0.73 and 0.92, respectively. Current is measured in unit of et/h, and the bias voltage is

measured in unit of t/e.

lead-2 is much higher than the current available in the lead-1 for the entire voltage range.

This is solely due to the effect of quantum interference among the electronic waves passing

through different arms of the molecular ring, and, we can manifest that for a fixed molecular

coupling, current amplitude significantly depends on the positions of different leads.

At the end, we illustrate the results plotted in Fig. 33, where the variation of current

I2 is shown as a function of V23 for constant current I1. The currents (I2) are calculated

for the strong-coupling limit, where the red, green, blue and magenta curves correspond to

fixed I1 = 0.09, 0.36, 0.73 and 0.92, respectively. For a constant V23, current through the

lead-2 increases gradually as we increase the current I1 which is clearly visible from the four

different curves in this figure. These current-voltage characteristics are quite analogous to

a macroscopic transistor. Thus, in short, we can predict that this three-terminal molecular

system can be operated as a transistor and we may call it a molecular transistor. Like a

conventional macroscopic transistor, the three different terminals of the molecular transistor

can be treated as emitter, base and collector. Here, the important point is that, since all
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these three terminals are equivalent to each other, any one of them can be considered as

an emitter or base or collector. Not only that, for this molecular transistor as there is only

one type of charge carrier, which is electron, conventional biasing method is not required.

These features provide several key ideas which motivate us to develop a molecular transistor

rather than the traditional one.

All the above current-voltage characteristics for the three-terminal quantum system are

studied only for the limit of strong molecular coupling. Exactly similar features, except

the current amplitude, are also observed for the case of weak-coupling limit, and in obvious

reason here we do not plot these results once again.

To summarize, in this section, we have explored electron transport through a benzene

molecule attached to metallic electrodes. The molecular system is described by a simple

tight-binding Hamiltonian and all calculations are done through Green’s function approach.

We have numerically calculated the multi-terminal conductances, reflection probabilities

and current-voltage characteristics. Very interestingly we have seen that the three-terminal

benzene molecule can be operated as an electronic transistor, and we call it as a molecular

transistor. These three terminals are analogous to emitter, base and collector as defined

in traditional transistor. All these features of electron transport may be utilized in fabri-

cating nano-electronic devices and our detailed investigation can provide a basic theoretical

framework to characterize electron transport in any complicated multi-terminal quantum

system.

Here we have made some minor approximations in considering the site energies of carbon-

type sites and the nearest-neighbor hopping strength between these sites in molecular ring.

The absolute value of nearest-neighbor hopping strength (t) alternates between the two

values, those are respectively taken as 2.5 and 2.85 [103]. Here we have approximated

it (t) to the absolute value 3. With this assumption, the characteristic features are not

changed at all. On the other hand, the absolute value of on-site energy (ǫi) corresponding

to carbon-type sites in this molecule is identical to 6.6 [103]. But here we have set it to

zero, only for the sake of simplicity, since the constant value of on-site energy simply gives

the shift of energy eigenvalues and hence transmission spectra, keeping the current-voltage

characteristics unchanged. The main motivation of considering a benzene molecule to reveal

the transistor operation is that molecular systems are ideal candidates for future development

of nano-electronic devices. Here we have done a model calculation considering a benzene
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molecule and presented the results for these set of parameter values. Instead of a benzene

molecule one can also take a mesoscopic ring and perform all the calculations for other set

of parameter values. In that situation, only the results presented here change numerically

with the ring size, but all the basic features remain exactly invariant.

V. SUMMARY AND CONCLUSIONS

In this review article we have demonstrated some important issues on electron transport

through some model quantum systems. With a brief introduction of several fundamental

issues in mesoscopic region, we have investigated electron transport through four different

polycyclic hydrocarbon molecules, namely, benzene, napthalene, anthracene and tetracene.

A tight-binding framework is used to describe the model quantum systems and all calcula-

tions are performed using Green’s function technique. Electron conduction through these

molecular wires is significantly influenced by the molecule-to-electrode coupling strength

and quantum interference of electronic waves passing through different arms of the molecu-

lar ring. Our numerical results predict that to design a molecular electronic device, not only

the molecule, both the molecular coupling to side attached electrodes and molecule-electrode

interface structure are highly important. Our model calculations provide a physical insight

to the behavior of electron conduction through molecular bridge systems.

In the next part we have illustrated the possibilities of designing classical logic gates

using simple mesoscopic rings. First we have studied three primary logic gate operations

using one (OR and NOT) and two (AND) quantum rings. Later, we have established other

four combinatorial logic gate operations (NOR, XOR, XNOR and NAND) using such one or

two rings. The key controlling parameter for all logic gate operations is the magnetic flux φ

threaded by the ring. The logical operations have been described in terms of conductance-

energy and current-voltage characteristics. Our analysis may be useful in fabricating meso-

scale or nano-scale logic gates.

In the last part of this review article, we have discussed about multi-terminal transport

problem. In a multi-terminal quantum system electron transport cannot be addressed by us-

ing Landauer approach. Büttiker first resolved this issue considering Landauer two-terminal

transport formula and the technique has been named as Landauer-Büttiker approach. Us-

ing this methodology we have studied multi-terminal quantum transport through a single
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benzene molecule. Our numerical results describe multi-terminal conductances, reflection

probabilities and current-voltage characteristics. Quite interestingly we have shown that the

three-terminal benzene molecule can be operated as an electronic transistor. These three

terminals are analogous to the emitter, base and collector as defined in conventional tran-

sistor. Our presented results may provide a basic theoretical framework to address electron

transport in any multi-terminal quantum system.
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