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1. Introduction 
Semiconductor device-based electronics industry is the largest industry in the world with global sales 

of over one trillion dollars since 1998. If current trends continue, the sales volume of the electronics 
industry will reach three trillion dollars and will constitute about 10% of the gross world product (GWP) by 
2010 [1]. The revolution in semiconductor industry, a subset of the electronics industry, began in 1947 (see 
Figure 1-1) with the fabrication of bipolar devices on slabs of polycrystalline germanium (Ge) [2]. 

  
- Bipolar transistor: 1947 - DTL - technology 1962
- Monocrystal germanium: 1950 - TTL - technology 1962
- First good BJT: 1951 - ECL - technology 1962
- Monocrystal silicon: 1951 - MOS integrated circuit 1962
- Oxide mask, - CMOS 1963

Commercial silicon BJT: 1954 - Linear integrated circuit 1964
- Transistor with diffused - MSI circuits 1966

base: 1955 - MOS memories 1968
- Integrated circuit: 1958 - LSI circuits 1969
- Planar transistor: 1959 - MOS processor 1970
- Planar integrated circuit: 1959 - Microprocessor 1971
- Epitaxial transistor: 1960 - I2L 1972
- MOS FET: 1960 - VLSI circuits 1975
- Schottky diode: 1960 - Computers using
- Commercial integrated VLSI technology 1977

circuit (RTL): 1961 - ...  
 

Figure 1-1. Some Historical Dates. 
 

Single-crystalline materials were later proposed and introduced, making possible the fabrication of grown 
junction transistors. Migration to silicon (Si)-based devices was initially hindered by the stability of the 
Si/SiO2 materials system, necessitating a new generation of crystal pullers with improved environmental 
controls to prevent SiO2 formation. Later, the stability and low interface-state density of the Si/SiO2 
materials system provided passivation of junctions and eventually the migration from bipolar devices to 
field-effect devices in 1960. By 1968, both complementary metal–oxide–semiconductor devices (CMOS) 
and polysilicon gate technology, that allowed self-alignment of the gate to the source/drain of the device, 
had been developed. These innovations permitted a significant reduction in power dissipation and a 
reduction of the device overlap capacitance, improving frequency performance and resulting in the 
essential components of the modern CMOS device. Professor Herbert Kroemer’s contributions to 
heterostructures — from heterostructure bipolar transistors [3] to lasers [4] — culminated in a Nobel Prize 
in Physics in 2000 and have paved the way for novel heterostructure devices including those in silicon. The 
unique properties of the variety of semiconductor materials have enabled the development of a wide variety 
of ingenious devices that have literally changed our world. To date, there are about 60 major devices, with 
over 100 device variations related to them. 

1.1 Need  for Quantum Transport in Nanoscale Devices 

1.1.1. Si Based Nanoelectronics  
The metal-oxide-semiconductor-field-effect transistor (MOSFET) and related integrated circuits now 
constitute about 90% of the semiconductor device market. Combining silicon with the elegance of the field-
effect transistor (FET) structure has allowed simultaneously making devices smaller, faster, and cheaper—
the mantra that has driven the modern semiconductor microelectronics industry. Nowadays, the single 
factor driving the continuous device improvement is the semiconductor industry's relentless effort to reduce 
the cost per function on a chip. The way this is done is to put more devices on a chip while either reducing 
manufacturing costs or holding them constant. This leads to three methods of reducing the cost per 
function. The first is transistor scaling, which involves reducing the transistor size in accordance with some 
goal, i.e. keeping the electric field constant from one generation to the next. With smaller transistors, more 
can fit into a given area than in previous generations. The second method is circuit cleverness, which is 
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associated with the physical layout of the transistors with respect to each other. If the transistors can be 
packed into a tighter space, then more devices can fit into a given area than before. The third method is to 
make the die larger. More devices can be fabricated on a larger die. All the while, the semiconductor 
industry is constantly looking for technological breakthroughs to decrease the manufacturing cost.  All of 
this effort serves to reduce the cost per function on a chip. 

 
(A) Device Scaling 
Device engineers are most concerned with the method of scaling introduced in the previous paragraph. 

The semiconductor industry has been so successful in providing continued system performance 
improvement year after year that the Semiconductor Industry Association (SIA) has been publishing 
roadmaps for semiconductor technology since 1992. These roadmaps represent a consensus outlook of 
industry trends, taking history as a guide. Recent roadmaps [5] incorporate participation from the global 
semiconductor industry, including the United States, Europe, Japan, Korea, and Taiwan. They basically 
affirm the desire of the industry to continue with Moore’s law [6], which is often stated as doubling of 
transistor performance and quadrupling of the number of devices on a chip every three years. The 
phenomenal progress signified by Moore’s law has been achieved through scaling of the MOSFET from 
larger to smaller physical dimensions. Scaling of CMOS technology has progressed relentlessly from a line 
width of 1 μm to the current 65-nm line width. Two key features characterize this era. First, slavish 
devotion to scaling by constant improvements in lithography (see Figure 1-2, top panel), as described by 
Dennard et al. [7]. At present, 193 nm lithography steppers are in general use. The active pursuit of 
advanced lithographic techniques, such as extreme ultraviolet (EUV) lithography currently in use at the 
Berkeley labs, which makes use of light at a wavelength of 13 nm, illustrates the relentless ardor with 
which scaling is still being pursued. Secondly, a minimal rate of introduction of substantially new materials 
and structures. Substantial effort is required to introduce new materials, and great effort is required to 
ensure that both manufacturable and reliable integration has been attained. Significant efforts that are 
currently under way include identification for a replacement of silicon dioxide as the gate dielectric for 
MOSFETs and, recently, announcements regarding the introduction of silicon–germanium in CMOS 
technology, give further evidence of forces for change. 
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Figure 1-2. Top panel – Needed improvements in lithography. Bottom panel – Transistor scaling as seen by 
Intel. 

 
Regarding conventional silicon MOSFETs, the device size is scaled in all dimensions (see Figure 1–2 

bottom panel), resulting in smaller oxide thickness, junction depth, channel length, channel width, and 
isolation spacing. Currently, 65 nm (with a physical gate length of 45 nm) is the state-of-the-art process 
technology, but even smaller dimensions are expected in the near future. The SIA forecasts that this 
exponential scaling of silicon (or silicon-compatible) FETs and integrated circuits will continue at least 
until the year 2010, when devices with 10 nm features should become commercially available. The groups 
from Toshiba and Lucent Bell Labs have fabricated n-channel MOSFETs with effective gate lengths below 
25 nm [8,9] and thus demonstrated that these feature sizes are feasible. An ultrasmall MOSFET with a 
channel length of 15 nm has been demonstrated in 2001 [10]. Conventional silicon MOS transistors with 
physical gate length of 10 nm have been demonstrated by Intel Corporation [11]. These devices can serve 
as the basis for the most advanced integrated circuit chips containing over one trillion (> 1012) devices. 
Intel has begun making some chips on the new process, with gigabit Ethernet, optical networking, and 
wireless ICs among the applications. As mentioned, device miniaturization results in reduced unit cost per 
circuit function. For example, the cost per bit of memory chips has halved every 2 years for successive 
generations of DRAM circuits. As device dimensions decrease, the intrinsic switching time decreases. 
Device speed has improved by four orders of magnitude since 1959. Higher speeds lead to expanded IC 
functional throughput rates. In the future, digital ICs will be able to perform data processing and numerical 
computation at terabit-per-second rates. As devices become smaller, they also consume less power. 
Therefore, device miniaturization also reduces the energy used for each switching operation. The energy 
dissipated per logic gate has decreased by over one million times since 1959. 

It is important to point out that the exponential growth in integrated circuit complexity, which has seen 
a hundred-million-fold increase in transistor count per chip over the past forty years, is finally facing its 
limits. Limits projected in the past have seemed to melt away before the concerted efforts of researchers 
and technologists, yet this time the limits seem more real and are already forcing new strategies on the 
design of future devices. Critical dimensions, such as transistor gate length and oxide thickness, are 
reaching physical limitations. Maintaining dimensional integrity at the limits of scaling is a challenge. 
Considering the manufacturing issues, photolithography becomes difficult as the feature sizes approach the 
wavelength of ultraviolet light. In addition, it is difficult to control the oxide thickness when the oxide is 
made up of just a few monolayers. Processes will be required that approach atomic-layer precision. Just 
being able to model future processes to predict geometries and doping concentrations of future devices is a 
challenge that has not been met. The existing empirical techniques will have to be aided by increasingly 
sophisticated ab initio calculations in order to reduce the experimental parameter space to manageable 
proportions.  
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In addition to the processing issues there are also some fundamental device issues. Shrinking the 
conventional MOSFET beyond the 50-nm-technology node requires innovations to circumvent barriers due 
to the fundamental physics that constrains the conventional MOSFET. The limits most often cited [12] 
include: (1) quantum-mechanical tunneling of carriers through the thin gate oxide; (2) quantum-mechanical 
tunneling of carriers from source to drain, and from drain to the body of the MOSFET; (3) control of the 
density and location of dopant atoms in the MOSFET channel and source/drain region to provide a high on-
off current ratio; (4) control of threshold voltage over the die is another major scaling challenge; (5) 
voltage-related effects such as subthreshold swing, built-in voltage and minimum logic voltage swing; (6) 
short-channel effects (SCEs), such as drain-induced barrier lowering (DIBL) that degrade the device 
performance; (7) Hot carriers that degrade device reliability, and (8) other application-dependent power-
dissipation limits. For analog/RF applications, the challenges additionally include sustaining linearity, low 
noise figure, power-added-efficiency, and transistor matching.  

The quickening pace of MOSFET technology scaling is accelerating the introduction of many new 
technologies to extend CMOS into nanoscale MOSFET structures heretofore not thought possible (see 
Figure 1-3). A cautious optimism is emerging that these new technologies may extend MOSFETs to the 22 
nm node (9-nm physical gate length) by 2016 if not by the end of this decade. These new devices will 
likely feature several new materials cleverly incorporated into new non-bulk MOSFET structures. They 
will be ultra fast and dense with a voracious appetite for power. Intrinsic device speeds may be more than 1 
THz and integration densities will exceed 1 billion transistors/cm2. Excessive power consumption, 
however, will demand judicious use of these high-performance devices only in those critical paths requiring 
their superior performance. Two or perhaps three other lower performance, more power-efficient 
MOSFETs will likely be used to perform less performance-critical functions on the chip to manage the total 
power consumption. 
 

 
 

Figure 1-3. A view from Intel on future technology nodes. 
 

(B) Beyond conventional silicon 
For digital circuits, a figure of merit for MOSFETs for unloaded circuits is CV I , where C is the gate 

capacitance, V is the voltage swing, and I is the current drive of the MOSFET. For loaded circuits, the 
current drive of the MOSFET is of paramount importance. Keeping in mind both the CV I  metric and the 
benefits of a large current drive, we note that device performance may be improved [12] by: (1) inducing a 
larger charge density for a given gate voltage drive; (2) enhancing the carrier transport by improving the 
mobility, saturation velocity, or ballistic transport; (3) ensuring device scalability to achieve a shorter 
channel length; and (4) reducing parasitic capacitances and parasitic resistances. For capitalizing these 
opportunities, the proposed technology options generally fall into two categories: (I) new materials and (II) 
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new device structures. In many cases, the introduction of a new material requires the use of a new device 
structure, or vice versa. To fabricate devices beyond current scaling limits, IC companies are 
simultaneously pushing the planar, bulk silicon CMOS design while exploring alternative gate stack 
materials (high-k dielectric [13] and metal gates), band engineering methods (using strained Si [14,15,16] 
or SiGe [5]), and alternative transistor structures. The concept of a band-engineered transistor is to enhance 
the mobility of electrons and/or holes in the channel by modifying the band structure of silicon in the 
channel in a way such that the physical structure of the transistor remains substantially unchanged (see 
Figure 1-4). This enhanced mobility increases the transistor transconductance (gm) and on-drive current 
(Ion). A SiGe layer or a strained-silicon on relaxed SiGe layer is used as the enhanced-mobility channel 
layer. It has already been demonstrated experimentally that at T = 300 K (room temperature), effective hole 
enhancement of about 50% can be achieved using the SiGe technology [17]. Intel has adopted strained 
silicon technology for its 65 nm process [18]. The results were nearly a 20% performance improvement, 
with only a few additional process steps. Scott Thompson, an Intel fellow, said Intel believes it can get 
another performance boost by increasing the germanium content at the 45 nm node. 
 

Other, process-induced strain techniques have 
been utilized recently

(J. Welser, J.L. Hoyt, and J.F. 
Gibbons, IEDM, 1992, pp. 1000-1003.)
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Figure 1-4. Method I for improving device performance – Introduction of new materials that lead to 
globally induced strain. Other methods that lead to locally induced strain have been recently pursued by 
Intel Corporation. 
 
The challenge in identifying suitable high-k dielectrics and metal gates for both conventional PMOS (p-
channel MOS) and NMOS (n-channel MOS) transistors has led to early adoption of alternative transistor 
designs (see Figure 1-5). These include primarily partially-depleted (PD) and fully-depleted (FD) silicon-
on-insulator (SOI) devices. Today there is also an extensive research in double-gate (DG) structures, and 
FinFET transistors [19], which have better electrostatic integrity and theoretically have better transport 
properties than single-gated FETs. A FinFET is a form of a double gate transistor having surface 
conduction channels on two opposite vertical surfaces and having current flow in the horizontal direction. 
The channel length is given by the horizontal separation between source and drain and is usually 
determined by a lithographic step combined with a side-wall spacer etch process. Many innovative 
structures, involving structural challenges such as fabrication on nanometer-scale fins and nanometer-scale 
planarization over an entire wafer, are currently under investigation. In conclusion, the semiconductor 
industry is approaching the end of an era of scaling gains by rote shrinkage of device dimensions, and 
entering a post-scaling era, a new phase of CMOS evolution in which innovation is demanded simply to 
compete. The trends in benefits to density, performance, and power will be continued through such 
innovations. Rather than coming to a close, a new era of CMOS technology is just beginning. Table 1-1 
[20] summarizes the advantages and challenges of some of the above-mentioned device structures. 
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Figure 1-5. Method II for improving device performance – Introduction of new device structures. 
 
 
Table 1-1. Non-classical CMOS devices. 
 

Device Ultrathin Body 

(UTB) SOI 

Band-
Engineered 
Transistor 

Vertical 
Transistor 

FinFET Double
-Gate  

Concept Fully-depleted 
SOI 

SiGe or Strained 
Si; bulk Si or 
SOI 

 
Double-gate or surround-gate 
structure 

Application/
Driver 

Higher performance, higher transistor density, lower power dissipation 

Advantages Improved 
subthreshold 
slope; VT 
controllability 

Higher drive 
current; com- 
patible with 
bulk Si and SOI 

Higher drive 
current; 
lithography 
independent 
gate length 

Higher drive 
current; 
Improved 
subthreshold slope; 
improved short-
channel effect 
(SCE) 

Scaling 
Issues 

Si film thickness, 
gate stack; worse 
SCE than bulk 
CMOS 

High mobility 
film thickness 
(SOI); gate 
stack; 
integratability 

Si film 
thiness; gate 
stack; 
integratability
; process 
complexity; 
accurate 
TCAD 

Gate alignment; Si 
film thickness; 
gate stack; 
integratability; 
process 
complexity; 
accurate TCAD 

Design 
Challenges 

Device 
characterization; 
compact model 
and parameter 
extraction 

Device 
characterization 

Device characterization; PD versus 
FD; compact model and parameter 
extraction; applicability to mixed 
signal applications 

(C) Quantum transport effects in nanoscale devices 
Semiconductor transport in the nanoscale region has approached the regime of quantum transport. This 

is suggested by two trends: (1) within the effective-mass approximation, the thermal de Broglie wavelength 
for electrons in semiconductors is on the order of the gate length of nano-scale MOSFETs, thereby 
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encroaching on the physical optics limit of wave mechanics; (2) the time of flight for electrons traversing 
the channel with velocity well in excess of 107 cm/sec is in the 10-15 to 10-12 sec region―a time scale which 
equals, if not being less than the momentum and energy relaxation times in semiconductors which 
precludes the validity of the Fermi’s Golden Rule that is used to calculate scattering rate out of initial state 
k [21]. 
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Figure 1-6. Top left panel – prototypical description of MOSFET device. Top right panel – classical vs. 
quantum charge description in a triangular potential well. Middle and bottom panel – potential and electric 
fields as obtained by the MOSCap tool designed and deployed on the nanoHUB by Dragica Vasileska. It 
utilizes PADRE as a background simulator. 

 
The static quantum effects, such as tunneling through the gate oxide and the energy quantization in the 

inversion layer of a MOSFET are also significant in nanoscale devices (see Figure 1-6). The current 
generation of MOS devices has oxide thicknesses of roughly 15-20Å and is expected that, with device 
scaling deeper into the nanoscale regime, oxides with 8-10Å thickness will be needed. The most obvious 
quantum mechanical effect, seen in the very thinnest oxides, is gate leakage via direct tunneling through the 
oxide (see Figure 1-7). The exponential turn-on of this effect sets the minimum practical oxide thickness 
(~10Å). A second effect due to spatial/size-quantization in the device channel region is also expected to 
play significant role in the operation of nanoscale devices. To understand this issue, one has to consider the 
operation of a MOSFET device based on two fundamental aspects: (1) the channel charge induced by the 
gate at the surface of the substrate, and (2) the carrier transport from source to drain along the channel. 
Quantum effects in the surface potential will have a profound impact on both, the amount of charge which 
can be induced by the gate electrode through the gate oxide, and the profile of the channel charge in the 
direction perpendicular to the surface (the transverse direction). The critical parameter in this direction is 
the gate-oxide thickness, which for a nanoscale MOSFET device is, as noted earlier, on the order of 1 nm. 

 

• For tox ≥ 40 Å, Fowler-Nordheim (FN) tunneling dominates
• For tox < 40 Å, direct tunneling becomes important
• Idir > IFN at a given Vox when direct tunneling active
• For given electric field: IFN independent of oxide thickness, Idir depends 

on oxide thickness

φB Vox > φB

Vox = φB
Vox < φB

FN FN/Direct Direct

tox

φB Vox > φB

Vox = φB
Vox < φB

FN FN/Direct Direct

tox

 

 
Figure 1-7. Top panel – Fowler-Nordheim vs. Direct tunneling. Bottom panel – Currents vs. technology 
generation. 
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Another aspect, which determines device characteristics, is the carrier transport along the channel (lateral 
direction). Because of the two-dimensional (2D), and/or one-dimensional (1D) in the case of narrow-width 
devices, confinement of carriers in the channel, the mobility (or microscopically speaking, the carrier 
scattering) will be different from the three-dimensional (3D) case. Theoretically speaking, the 2D/1D 
mobility should be larger than its 3D counterpart due to reduced density of states function, i.e. reduced 
number of final states the carriers can scatter into, which can lead to device performance enhancement. A 
well known approach that takes this effect into consideration is based on the self-consistent solution of the 
2D Poisson–1D Schrödinger–2D Monte Carlo, and requires enormous computational resources as it 
requires storage of position dependent scattering tables that describe carrier transition between various 
subbands [22]. More importantly, these scattering tables have to be re-evaluated at each iteration step as the 
Hartree potential (the confinement) is a dynamical function and slowly adjusts to its steady-state value [23]. 
It is important to note, however, that in the smallest size devices, carriers experience very little or no 
scattering at all (ballistic limit), which makes this second issue less critical when modeling nanoscale 
devices.  Ballistic transport in 2D/3D FinFETs is elaborated in great details in section 4 of this review 
article. 

On the other hand, the dynamical quantum effects in nanoscale MOSFETs, associated with energy 
dissipating scattering in electron transport are physically much more involved [24]. There are several 
fundamental problems one must overcome in this regard. For example, since ultrasmall devices, in which 
quantum effects are expected to be significant, are inherently three-dimensional (3D) one must solve the 
3D Schrödinger equation. In addition, the device region (channel) is always connected to the classical 
reservoirs (source and drain) from which the macroscopic currents are extracted. In other words, the entire 
device is intrinsically an open-system and the quantum region and the reservoirs must be treated on the 
same physical ground [25]. This is, of course, one of the most difficult problems to solve in quantum 
physics and will be addressed in section 5 of this review article. 

There is another fundamental problem associated with quantum transport. Since one is mainly 
concerned with devices operated at room temperature, phase-breaking inelastic scattering is inevitable. One 
would like to stress that this is true even under quasi-ballistic as well as diffusive transport regime. One is, 
therefore, in a somewhat controversial situation. The phase coherence should be preserved because of the 
small device size (see Figure 1-8), whereas phase breaking scattering has to be included because of the 
relatively high operating temperature. However, the treatment of the phase-breaking scattering in quantum 
transport is not quite clear. 

 

moving without collisions

Intel - 2004

electron

0.1 micron

Intel - 2004

electron

Intel - 2004Intel - 2004Intel - 2004

electron

0.1 micron

ballistic

 
 
Figure 1-8. Ballistic Motion in transistors – left panel. An electron like a billiard ball moving through 
potential barriers due to impurities. 

Another question that becomes important in nanoscale devices is the treatment of the scattering process 
itself. Within the Born approximation, the scattering processes are treated as independent and instantaneous 
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events. It is, however, a nontrivial question to ask whether such an approximation is actually satisfactory 
under high temperature, in which the electron strongly couples with the environment (such as phonons and 
other carriers). In fact, many dynamical quantum effects, such as the collisional broadening of the states or 
the intra-collisional field effect, are a direct consequence of the approximation employed for the scattering 
kernel in the quantum kinetic equation. Depending on the orders of the perturbation series in the scattering 
kernel, the magnitude of the quantum effects could be largely changed. Many of these issues relevant to 
quantum transport in semiconductors are highlighted in Table 1-2. Note that at present there is no 
consensus as to what can be the unified approach to quantum transport in semiconductors. Density 
matrices, and the associated Wigner function approach, Green’s functions, and Feynman path integrals all 
have their application strengths and weaknesses. 

 
Table 1-2. Quantum Effects. 

 

1. Static Quantum Effects 
• Periodic crystal potential and band structure effects 
• Scattering from defects, phonons 
• Strong electric and magnetic field 
• Inhomogeneous electric field 
• Tunneling–gate oxide tunneling and source-to-drain tunneling 
• Quantum wells and band-engineered barriers 

 

2. Dynamical Quantum Effects 
• Collisional broadening 
• Intra-collisional field effects 
• Temperature dependence 
• Electron-electron scattering 
• Dynamical screening 
• Many-body effects 
• Pauli exclusion principle 

 
 
1.1.2 Heterostructure Devices in III-V or II-VI technology 
Innovations in materials growth technologies have been the key to the investigation of new materials, new 
physical concepts and their application in novel electronic and optical devices. The invention of 
semiconductor lasers [26] and metal semiconductor field effect transistors (MESFETs) [27] were important 
technological breakthroughs that occurred in GaAs and determined the directions of its future research to 
overcome the shortcomings in the then existing GaAs materials technology. The first breakthrough was the 
development of liquid phase epitaxy (LPE) for GaAs and other related III-V compounds [28]. The 
advantages of LPE included reduced background impurity, native defect concentrations, and the realization 
of alloy material systems and new structures by combining different materials (heteroepitaxy and 
heterojunctions) which resulted in its widespread use. These attributes resulted in advances in microwave, 
high speed digital, and optoelectronic devices based upon two factors, firstly, the improvement in the 
materials properties of GaAs and, secondly, the application of AlGaAs/GaAs heterostructures. 
Improvement in the purity of the materials reduced the non-radiative recombination rates, resulting in 
longer minority carrier lifetimes and lower trap-related noise levels. Though LPE led to the introduction of 
heterojunctions it had a lot of shortcomings in controlling layer thicknesses, surface and interface flatness 
and interface abruptness. 

The development of Molecular Beam Epitaxy (MBE) [29] (see Figure 1-9) has been pushed by device 
technology to achieve structures with atomic layer dimensions and this has led to an entirely new area of 
condensed matter physics and investigation of structures exhibiting strong quantum size effects. MBE has 
played a key role in the discovery of phenomena like two dimensional electron and hole gases, quantum 
Hall effect [30] and new structures like quantum wires and quantum dots, etc. The continued 
miniaturization of solid state devices is leading to the point where quantization-induced phenomena 
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become more and more important. These phenomena have shown that the role of material purity, native 
defects and interface quality are very critical to the device performance. Modulation doping is employed to 
achieve adequate carrier densities in one region of the device which is physically separated from the source 
of the carriers, the ionized impurities. 

  

 
 

Figure 1-9. Molecular beam epitaxy process explained. After A. Herman. 
 

Since many devices have to maintain the phase coherence of the electron wavefunction over the entire 
length of the device, there can be no inelastic scattering of the electrons. Thus, long mean free paths are 
crucial to the operation of such devices. The scattering of electrons by, for example, high background 
impurity or defect densities or rough interfaces would nullify the quantum phenomena. The evolution of 
high-purity MBE material has been the result of improvements in four major areas: (1) technologies for 
achieving ultra high vacuum; (2) application of superior materials for high temperature MBE system 
components; (3) identification and development of the optimum substrate preparation and epitaxial growth 
conditions, and (4) improvement in the purity of the substrate, source and crucible materials. The 
development of high purity GaAs/AlGaAs materials has been closely linked to the identification of residual 
impurities in these materials. The Hall mobility is a very sensitive qualitative measure of material purity at 
low temperatures where impurity scattering is dominant. As noted earlier, the approach to GaAs changed in 
1978, when Dingle and co-workers demonstrated that very high mobilities could be achieved in modulation 
doped structures grown by MBE. 

 
(A) Modulation doping of AlGaAs/GaAs heterostructures with in-plane transport 
The low temperature mobility of modulation doped GaAs/AlGaAs heterostructures with in-plane 

transport is a good measure of the GaAs/AlGaAs quality. This depends very strongly on the epitaxial 
structure, particularly the placement and quantity of dopant impurities. The two-dimensional electron gas 
(2DEG) that exists at the interface between GaAs and the wider band gap AlGaAs exhibits a very high 
mobility at low temperatures. Even at room temperatures, the mobility is larger than that of bulk GaAs. 
Two factors contribute to this higher mobility, both arising from the selective doping of AlGaAs buffer 
layers rather than the GaAs layers in which the carriers reside. The first is the natural separation between 
the donor atoms in the AlGaAs and the electrons in the GaAs. The second is the inclusion of an undoped 
AlGaAs spacer layer in the structure. Such structures are quite complicated but can be easily fabricated 
using MBE techniques. A typical heterostructure begins with the bulk GaAs wafer upon which a GaAs 
buffer layer or super lattice is grown. The latter is used to act as a barrier to the out-diffusion of impurities 
and defects from the substrate. It also consists of a GaAs cap layer and alternating layers of AlGaAs and 
GaAs. The common practice is to use a doping for the AlGaAs layers (see Fig. 1-10 – top panel) in the 
active region but nowadays undoped AlGaAs layers are used and a delta doped layer is included (see Fig. 
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1-10 – bottom panel). This delta doped layer along with the growth of superlattices restricts the formation 
of defects, known as D – X centers [31], to a minimum. There are two important AlGaAs layers on either 
side of the δ–doped layer and they are called buffer and spacer layer, respectively. The spacer layer is 
closer to the GaAs quantum well and is of high purity to prevent scattering of the channel carriers by the 
ionized impurities. A usual practice is to use undoped AlGaAs layers to have very good confinement of the 
charge carriers in the well.  
 

 
 
 

 
 

Figure 1-10. Top panel – uniformly doped barrier layer. Bottom panel – delta doped barrier layer. 
 
Other device parameters that have to be considered are the composition of the Aluminum in AlGaAs. 

There is a compromise in the value chosen for x: if x is smaller than 0.2 then the band discontinuity will be 
too small to properly confine carriers in the well; if x is too large then defects, termed as D-X centers, tend 
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to appear in the AlGaAs. To overcome this problem Aluminum content is limited to about 20% and other 
variations like δ–doping layer and growth of superlattices are introduced into the MBE techniques. 
Examples of devices that utilize modulation doping are high-electron mobility transistor HEMT [32] (see 
Figure 1-11) in which size-quantization effects must be taken into account for proper description of size 
quantization. For very short devices this necessitates the use of some of the quantum transport approaches 
discussed in Section 3 of this review article. 

 

 
Figure 1-11. Left panel – pseudomorphic HEMT. Right panel – Typical IV characteristics of a HEMT 

device. 
  
(B) Vertical transport - Resonant Tunneling Devices 
Over the past three decades, resonant tunneling diodes (RTD’s) have received a great deal of attention 

following the pioneering work by Esaki and Tsu [33]. Significant accomplishments have been achieved in 
terms of RTD device physics (see Figure 1-12), modeling, fabrication technology, and circuit design and 
applications. The RTD has been widely studied, and well over a thousand research papers have been 
written on various aspects of this seemingly simple device. Yet, whether RTD’s will find their way into 
mainstream. electronics in the future remains inconclusive. The research is ongoing and, in some areas, 
very active. 
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Figure 1-12. Schematics of the conduction band profile and the physical processes occurring in resonant 
tunneling diode (double barrier structure). 

 
It is well documented that today’s advanced information technology is mainly attributed to the 

electronic representation and processing of information in a low-cost, high speed, very compact, and highly 
reliable fashion, and that the quest and accomplishments of continual miniaturization and integration of 
solid-state electronics have been the key to the success of the computer industry and computer applications. 
The advanced multimedia infrastructure and services in the future will demand further reduction in chip 
size. Chip density, represented by memory technology, has been following Moore’s law and has roughly 
doubled every other year over the last three decades. The trend remains strong and definite, at least for the 
foreseeable future. For example, a 0.15 µm process technology has been implemented in the first 4-Gb 
dynamic random access memory (DRAM) unveiled in 1997, and the feature size of DRAM transistors is 
projected to be 0.10 µm (16 Gb) in 2007, and 0.07 µm (64 Gb) by 2010 [3]. A natural and realistic 
question, then, is whether this desired trend will continue indefinitely. While an ultimate limit on the 
downscaling of conventional transistors and integrated circuits (IC’s) will eventually be reached, device 
physicists and IC engineers have pondered answers, both evolutionary and revolutionary, to the challenge. 
While the downscaling of conventional transistors enjoys an exceptional, rapid evolution, revolutionary 
device concepts have been actively sought, particularly in the two related areas known as nanoelectronics 
and single electronics [34].  

The idea of nanoelectronics was popularized in the mid-1980’s, when pioneering work on resonant 
tunneling and bandgap engineering in low-dimensional semiconductor quantum wells and superlattices 
grew and was championed by several groups for the exploration of new opportunities for circumventing the 
limit on the downscaling of conventional transistors and IC’s. For example, in the early 1980's Bob Bate 
analyzed the trends of the semiconductor industry and concluded that new device concepts based upon 
quantum effects would be required to keep the exponential growth trends going into the 21st century. At 
about this time, Gerry Sollner and co-workers [35] at MIT-Lincoln Lab reported the first quantum-well 
resonant-tunneling diode (RTD) with respectable performance. The RTD was quickly adopted as the 
prototypical quantum semiconductor device.  Since then, the RTD, and its several variations, has become a 
research focus in nanoelectronics for its promise as a primary nanoelectronic device for both analog and 
digital applications. 

For device realization, nanofabrication technology has made impressive advances during the last 
decade by routinely producing artificial semiconductor structures using molecular-beam epitaxy, metal-
organic chemical vapor deposition, and chemical-beam epitaxy. Accurately controlled feature sizes as 
small as monolayers of atoms in the growth direction for dissimilar semiconductor materials, or 
heterostructure systems, have been achieved. Nanoscale lithography and patterning by electron-beam 
lithography have also been highly developed in the direction perpendicular to the growth direction. 
Although further improvements in this area call for more precise control, better resolution, and improved 
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interfaces, recent advances in nanofabrication technology have brought quantum effect device concepts to 
reality and have presented a great challenge for device physicists in the theoretical analysis of 
nanoelectronic devices. 

Continuing effort in quantum transport modeling of vertical transport in RTD’s is motivated by the 
need to understand device operation and to provide a primary test for developing theoretical tools for 
nanoelectronic devices. Not surprisingly, this is very different from traditional device modeling. Moreover, 
it provides valuable knowledge of the quantum aspects of electron transport in mesoscopic systems. Since 
the useful device properties, e.g., fast switching operation between ON and OFF states, are a consequence of 
the desired and controlled electron motion in the device, it is essential for device designers to understand 
and quantify the transport processes. Among the numerous nanoelectronic devices proposed and 
demonstrated, the RTD is perhaps the most promising candidate for digital circuit applications due to its 
negative differential resistance (NDR) characteristic, structural simplicity, relative ease of fabrication, 
inherent high speed, flexible design freedom, and versatile circuit functionality. There is a good practical 
reason to believe that RTD’s may be the next device based on quantum confined heterostructures to make 
the transition from the world of research into practical application. Progress in epitaxial growth has 
improved the peak-to-valley current ratio at room temperature even beyond that required for many circuit 
applications. This temperature requirement is the single most important feature that any new technology 
must satisfy. It is what distinguishes the RTD from other interesting quantum device concepts that have 
been proposed but that show weak, if any, desired phenomena at room temperature.  

A variety of circuit functions has already been demonstrated, providing proof-of-concept of proposed 
applications. The main issue at present is not, in fact, the RTD performance itself but the monolithic 
integration of RTD’s with transistors [high electron mobility transistors (HEMT’s) or heterojunction 
bipolar transistors (HBT’s)] into integrated circuits with useful numbers and density of devices. Major 
challenges include the variation in the current–voltage characteristic of the RTD’s across a wafer and from 
wafer to wafer, fabrication-dependent parasitic impedances, and edge effects as the RTD mesa area is 
decreased in order to reduce the intrinsic parasitic impedances and to achieve higher integration levels. 
Recently developed techniques for providing feedback during epitaxial growth via optical and 
photoemission probes have greatly improved the situation as far as uniformity of growth is concerned. It is 
for these reasons that RTD research has been sustained for more than two decades and may now be rapidly 
approaching the stage of technology implementation.  
 
1.1.3 Modeling of nanoscale devices 
Standard sequence that one follows when modeling device structures of interest involves (1) process 
simulation step that is followed by a (2) device simulation and is finalized with a (3) circuit simulation step. 
In this regard, device simulation is the process of using computers to calculate the behavior of electronic 
devices, i.e. of calculating the current-voltage (I-V) curves of a device in general. The devices are defined 
mathematically in terms of their dimension, material composition, and other relevant physical information, 
all of which is obtained from the process simulation step. 

There are two issues that make simulation important.  Product cycles are getting shorter with each 
generation, and the demand for production wafers shadows development efforts in the factory. Consider the 
product cycle issue first. In order for companies to maintain their competitive edge, products have to be 
taken from design to production in less than 18 months. As a result, the development phase of the cycle is 
getting shorter. Contrast this requirement with the fact that it takes 2-3 months to run a wafer lot through a 
factory, depending on its complexity. The specifications for experiments run through the factory must be 
near the final solution. While simulations may not be completely predictive, they provide a good initial 
guess. This can ultimately reduce the number of iterations during the device development phase. The 
second issue that reinforces the need for simulation is the production pressures that factories face. In order 
to meet customer demand, development factories are making way for production space. It is also expensive 
to run experiments through a production facility. The resources could have otherwise been used to produce 
sellable product. Again, device simulation can be used to decrease the number of experiments run through a 
factory. Device simulation can be used as a tool to guide manufacturing down the right path, thereby 
decreasing the development time and costs (see Figure 1-13). Besides offering the possibility to test 
hypothetical devices which have not (or could not) yet been manufactured, device simulation offers unique 
insight into device behavior by allowing the observation of phenomena that can not be measured on real 
devices. It is related to, but usually separate from process simulation, which deals with various physical 
processes such as material growth, oxidation, impurity diffusion, etching, and metal deposition inherent in 
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device fabrication leading to integrated circuits. Device simulation is distinct from another important aspect 
of computer-aided design (CAD), device modeling, which deals with compact behavioral models for 
devices and sub-circuits relevant for circuit simulation in commercial packages such as SPICE. 

 

 
 

Figure 1-13. ITRS Technology node and related timeline. 
 

The main components of semiconductor device simulation at any level of approximation are illustrated 
in Figure 1-14 [36].  There are two main kernels, which must be solved self-consistently with one another, 
the transport equations governing charge flow, and the fields driving charge flow.  Both are coupled 
strongly to one another, and hence must be solved simultaneously. The fields arise from external sources, 
as well as the charge and current densities which act as sources for the time varying electric and magnetic 
fields obtained from the solution of Maxwell’s equations. Under appropriate conditions, only the quasi-
static electric fields arising from the solution of Poisson’s equation are necessary.  The fields, in turn, are 
driving forces for charge transport as illustrated in Figure 1-15 for the various levels of approximation 
within a hierarchical structure ranging from compact modeling at the top to an exact quantum mechanical 
description at the bottom. 

 
Figure 1-14. A schematic description of the device simulation sequence. 
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Figure 1-15. Illustration of the hierarchy of transport models. 
 

Note that semiclassical Boltzmann transport has been the mainstay of the semiconductor technology 
from its early development. Up until now, most device simulations including the full-band Monte-Carlo 
(FBMC) method are based on the solution of the Boltzmann transport equation (BTE) and its 
simplifications, the hydrodynamic (HD) transport equations and the drift-diffusion (DD) model. But in the 
last decade, as semiconductor technology has continued to pursue the down scaling of device dimensions 
into the nanoscale regime, many new and interesting questions have emerged concerning the physics of 
small devices. Ref. [36] highlights some of the basic physical effects that are viewed as important in 
nanoelectronics research. 

 
Table 1-3. Important effects in ultrasmall electronics. 
 

1. Transport Effects 
(a) Drift 

• Velocity overshoot 
• Ballistic transport 
• Oxide polar optical phonons decreasing channel mobility 
• Hot-electron effects (scattering in high electric field, injection into oxide) 
• Hot-phonon effects 

(b) Diffusion 
• Hot-electron diffusion (invalidation of Einstein relation) 
• Anisotropy of diffusion 
• Diffusion and reduced dimensionality 

 

2. Size Effects 
• Spatial quantization (one- and two-dimensional electron) 
• Quantum resonances―surface plasmons, phonons 
• Interfaces, surfaces, metal boundaries (influence of these boundaries on  
 important semiconductor parameters) 
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3. Environmental Effects 
• Low-level radiation effects (α-particles from IC packages, cosmic rays) 
• Synergetic effects 
• Remote polar scattering 
• Parasitic and interconnect factors, model contacts 

 

4. Generation-Recombination Effects 
• Hot-electron thermionic emissions 
• G-R noise for non-stationary transport 
• Impact ionization effects 

 

5. Solid State Physics/Electronics 
• Nonlinear response theory 
• Reexamine effective mass theory 
• Statistical mechanics of the finite Fermi systems 
• Electron-phonon interactions with confined phonons 
• Long-range Coulomb potential  
• Quantum transport 
• Interface physics modeling 
• Low-dimensional effects 

 
 
Note that the semiclassical device models become invalid in the nanometer regime since the classical 

transport concepts treat electrons (and holes) as particles, and the transport parameters are defined by 
taking ensemble averages of the particle motion. In nanostructures, a device theory that can properly treat 
quantum transport phenomena between macroscopic and microscopic scales is therefore needed. Work in 
this field has invoked mesoscopic physical principles and hierarchical quantum device models for 
formulating and quantifying nanoelectronic transport and device analysis. However, the available 
nanoelectronic device models have not been well established to the standards of conventional device 
models. The goal of this review article is to represent the latest in modeling quantum transport in a variety 
of device structures including RTD’s and FinFETs using most suitable approaches for the problem at hand. 

1.2  Open Systems 
A general feature of electron devices is that they are of use only when connected to a circuit, and to be so 
connected any device must possess at least two terminals, contacts, or leads. As a consequence, every 
device is an open system with respect to carrier flow [37]. This is the overriding fact that determines which 
theoretical models and techniques may be appropriately applied to the study of quantum devices. For 
example, the quantum mechanics of pure, normalizable states, such as those employed in atomic physics, 
does not contribute significantly to an understanding of devices, because such states describe closed 
systems. 

To understand devices, one must consider the un-normalizable scattering states, and/or describe the 
state of the device in terms of statistically mixed states, which casts the problem in terms of quantum 
kinetic theory. As a practical matter of fact, a device is of use only when its state is driven far from 
thermodynamic equilibrium by the action of the external circuit. The non-equilibrium state is characterized 
by the conduction of significant current through the device and/or the appearance of a non-negligible 
voltage drop across the device. 

In classical transport theory, the openness of the device is addressed by the definition of appropriate 
boundary conditions for the differential (or integro-differential) transport equations. Such boundary 
conditions are formulated so as to approximate the behavior of the physical contacts to the device, typically 
Ohmic or Schottky contacts [38]. In the traditional treatments of quantum transport theories, the role of 
boundary conditions is often taken for granted, as the models are constructed upon an unbounded spatial 
domain. The proper formulation and interpretation of the boundary conditions remains an issue, however, 
and will be examined in the present work. It should be understood that, unless otherwise specified, all 
models to be considered here are based upon a single-band, effective-mass Schrodinger equation. 
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1.2.1 Tunneling Theory 
The simplest model of quantum transport in devices is to describe the problem in terms of the scattering of 
the electron wavefunction by a spatially varying potential. One assumes that this potential is situated 
between two electron reservoirs, each of which emits particles with an equilibrium distribution into the 
scattering region. The reservoirs will, in general, have different chemical potentials, their difference 
representing an applied bias voltage. The net flux of electrons passing between the reservoirs constitutes 
the electrical current conducted by the device. A single-particle Schrodinger equation can only describe a 
situation in which the electrons move perfectly coherently throughout the device. Any loss of coherence 
due to inelastic collisions requires a higher-level description. Nevertheless, the solutions of Schrodinger’s 
equation remain one of the fundamental tools available to understand and predict the behavior of quantum-
scale devices. 

In this section we will first show that all particles with E<V0 incident on a potential step of height V0 
are reflected. In other words, although the quantum-mechanical treatment predicts penetration of the 
wavefunction into the classically-forbidden region (the probability density in this region is non-zero), we 
can not demonstrate this phenomenon in a laboratory.  However, one can demonstrate the penetration into a 
classical-forbidden region if we chop-off the potential step, changing it into a barrier of width L.  Then, 
according to quantum physics, particles with E<V0 incident on the barrier from the left, will penetrate the 
potential and will be transmitted into the classically-allowed region where we can detect them.  This wholly 
non-classical phenomenon is called TUNNELING (see Figure 1-16) [21].  The two remarkable applications 
of tunneling are: 

(a) Resonant tunneling diodes, which are used as switching units in fast electronic circuits. 
(b) Scanning tunneling microscope (STM), based on the penetration of electrons near the surface of a 

solid sample through the barrier at the surface (see Figure 1-17).  These electrons form a "cloud" 
of probability outside the sample.  Although the probability of detecting one of these electrons 
decays exponentially with distance (from the surface), one can induce and measure a current of 
these electrons and attain a magnification factor of 100 million - large enough to permit resolution 
of a few hundredths the size of an atom.  Gerd Binning and Heinrich Rohrer won the Noble Prize 
in Physics in 1986 for the invention of the STM [39]. 
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Figure 1-16. Quantum-mechanical tunneling. 
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Figure 1-17. Scanning tunneling microscope operation based on quantum-mechanical tunneling. 
 
In the rest of this section, we will first describe the tunneling phenomenon through the example of a single 
barrier.  Then, we will talk about multiple barrier case formulation, the double barrier being a special case 
which we have in resonant tunneling diodes. 

 
 (A) General Notation 

Quantum physicists are interested in all kinds of physical systems (photons, conduction electrons in 
metals and semiconductors, atoms, etc.). States of these rather diverse systems are represented by the same 
type of functions, the state functions [40]. The first postulate of quantum mechanics states that every 
physically-realizable state of the system is described in quantum mechanics by a state function ψ that 
contains all accessible physical information about the system in that state. Physically realizable states are 
states that can be studied in laboratory, accessible information is the information we can extract from the 
wavefunction, and the state function is function of position, momentum and energy that is spatially 
localized. Also, if ψ1 and ψ2 represent two physically-realizable states of the system, then the linear 
combination 
 2211 ψ+ψ=ψ cc , (1-1) 
where c1 and c2 are arbitrary complex constants, represents a third physically realizable state of the system. 

Quantum mechanics describes the outcome of an ensemble of measurements, where an ensemble of 
measurements consists of a very large number of identical experiments performed on identical non-
interacting systems, all of which have been identically prepared so as to be in the same state. This brings us 
to the second postulate of quantum mechanics that states: If a system is in a quantum state represented by 
a wavefunction ψ, then 

 dVPdV 2ψ=  (1-2) 
is the probability that in a position measurement at time t the particle will be detected in the infinitesimal 

volume dV. Note that 2),( txψ  is the position and time probability density. The importance of 
normalization follows from the Born interpretation of the state function as a position probability amplitude. 
According to the second postulate of quantum mechanics, the integrated probability density can be 
interpreted as a probability that in a position measurement at time t, we will find the particle anywhere in 
space. Therefore, the normalization condition for the wavefunction is: 
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 1),,(),,(),,( *2 =∫ ψψ=∫ ψ=∫ dVzyxzyxdVzyxPdV  (1-3) 
There are several limitations on the wavefunction that arise from this normalization condition: (1) Only 
normalizable functions can represent a quantum state and these are called physically admissible functions. 
(2) State function must be continuous and single valued function. (3) State function must be a smoothly-
varying function (continuous derivative). 

The Born interpretation of quantum mechanics enables us to determine from a wavefunction, the 
probabilistic information. For example, we can answer the following question: In an ensemble 
measurement of position at time t, what is the probability that a member of the ensemble will exhibit a 
value in the range from x to x+dx? To characterize the results of an experiment, we use two statistical 
quantities: ensemble average <x> and standard deviation Δx. In quantum theory, the ensemble average of 
an observable for a particular state of the system is called the expectation value of that observable that is 
calculated using  

 ),(),(),(),( * ψψ=∫ ψψ∫ =>=< xdxtxxtxdxtxxPx  (1-4) 
Note that the expectation value can be time dependent, i.e. <x>=<x(t)>. Also, the expectation value depends 
upon the state of the system. Different states, represented by different state functions have different 
ensemble averages. Let’s denote a generic observable Q(x) that depends only upon position. The 
expectation value of this observable is given by: 

 ∫ ψψ>=< dxtxxQtxtQ ),()(),()( *  (1-5) 
The other statistical quantity that one uses in quantum physics is the standard deviation of an observable - 
otherwise known as uncertainty.  For a position measurement, the uncertainty in x answers the following 
question:  In an ensemble measurement at time t of the position of a particle in a state ψ(x,t), what is the 
spread of the individual results around the expectation value <x>? To answer this question, one needs to 
calculate the dispersion: 

 [ ] 222*2 ),(),( ><−>=<∫ ψ><−ψ=Δ xxdxtxxxtxx  (1-6) 
The uncertainty, or the standard deviation is given by: 

 22 ><−><=Δ xxx , (1-7) 
or the uncertainty equals the square-root of the dispersion. In general, the uncertainty in the measurement 
of the observable Q(x) is given by: 

 22 ><−><=Δ QQQ  (1-8) 
We have already stated that ψ(x,t) is the state function of a system in the position representation.  It 

must be normalizable since it describes a localized particle.  Therefore, one can define a Fourier transform 
of this function: 

 ∫ φ
π

=ψ
∞

∞−
)(

2
1)0,( kdkex ikx , (1-9) 

where φ(k) is the Fourier coefficient, or in this particular case it represents the momentum wavefunction 
also known as the amplitude function. The description of the particle in momentum state is achieved using 
these momentum wavefunctions. In summary, the position probability amplitude ψ(x,t) and the momentum 
state function φ(k) are state descriptors for a microscopic system. The second class of basic elements are the 
observables, which represent the physical attributes of a system that can be measured in a laboratory.  
Examples of observables are position x(t), momentum p(t) and energy E(x(t)).  The problem of applying a 
classical definition of observables for quantum states is that it is impossible to measure the properties of a 
microscopic system without altering its state. The third postulate of quantum mechanics states that: Every 
observable in quantum mechanics is represented by an operator which is used to obtain physical 
information about the observable from the state function.  For an observable that is represented in classical 
physics by a function Q(x,p), the corresponding operator is ),( pxQ ))

 [41]. 
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Table 1-4. Most important operators in quantum Physics. 
 

Observable Operator 
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Momentum 

xi
p

∂
∂

=
h)

 

Energy 
)(

2
)(

2 2

222
xV

xm
xV

m
pE +

∂

∂
−=+=

h)
)

 

 

An operator (see Table 1-4) is an instruction, a symbol which tells us to perform one or more mathematical 
acts on a function, say f(x). The essential point is that they act on a function. Operators act on everything to 
the right, unless the action is constrained by brackets. The addition and subtraction rule for operators reads: 

 ( ) )()()( 2121 xfQxfQxfQQ
))))

±=±  (1-10) 
The product of two operators implies successive operation: 

 [ ])()( 2121 xfQQxfQQ
))))

=  (1-11) 
The product of two operators is a third operator: 

 213 QQQ
)))

=  (1-12) 
Two operators commute if they obey the simple operator expression: 

 [ ] 1221122121 0, QQQQQQQQQQ
))))))))))

=⇒=−=  (1-13) 
The requirement for two operators to be commuting operators is a very important one in quantum 
mechanics and it means that we can simultaneously measure the observables represented with these two 
operators. The non-commutivity of the position and the momentum operators (the inability to 
simultaneously determine particles position and its momentum) is represented with the Heisenberg 
uncertainty principle, which in mathematical form is expressed as: 

 [ ]pxpx ))h ,
2
1

2
=≥Δ⋅Δ , (1-14) 

and can be generalized for any pair of observables. 

In 1926 Erwin Schrödinger [42] proposed an equation that describes the evolution of a quantum-
mechanical system (which represents quantum equations of motion), and is of the form: 
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This work of Schrödinger was stimulated by a 1925 paper by Einstein on the quantum theory of ideal gas 
[43], and the de Broglie theory of matter waves [44]. Examining the time-dependent SWE, one can also 
define the following operator for the total energy: 

 
t

iE
∂
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= h
)

 (1-16) 

 
The introduction of the Schrodinger equation brings us to the fourth fundamental postulate of quantum 
mechanics which states that the time development of the state functions of an isolated quantum system is 
governed by the time-dependent SWE tiH ∂ψ∂=ψ /h

)
, where VTH

)))
+=  is the Hamiltonian of the 
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system. The time-dependent Schrödinger wave equation (TDSWE) describes the evolution of a state 
provided that no observations are made. An observation alters the state of the observed system, and as it is, 
the TDSWE can not describe such changes. 

The solution of the TDSE is a rather formidable problem even in 1D.  The underlying problem is not 
just that it is a partial differential equation of second order in x and first order in t, but that we must 
consider both of these variables at once.  As a consequence, the space and time dependence of the 
wavefunction may be very complicated.  One way to solve the TDSE is to seek solutions that have a 
particularly simple form, i.e. 

 )()(),( txtx ξψ=ψ  (1-17) 
These product functions are called separable solutions of the partial differential equation (PDE).  In 
Quantum Mechanics, they are called stationary-state wavefunctions [45].  One can find these stationary-
state wavefunctions using a method called separation of variables.  For example, substituting the above 
expression for ),( txψ  into the TDSE, one gets: 
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or: 
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The last equation is almost separable, since, in general, the potential energy can depend on both x and t.  If 
we assume that )(),( xVtxV = , i.e. the potential energy is time-independent, then the LHS is only a 
function of x and the RHS is only a function of t. Therefore, the two sides can be equal if they are constant.  
This gives us two equations: 
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(1-20)  

The fact that we can obtain these two equations at all, provided that V does not depend on time, proves that 
stationary state wavefunctions exist for systems with a time-independent potential energy. A system whose 
potential energy is time-independent is said to be conservative.  Hence, stationary states exist for 
conservative systems. 

Now, the solution of the second equation [for )(tξ ] is very simple, and is given by: 

 h/)0()( tiet α−ξ=ξ  (1-21) 
The Born interpretation of ),( txψ  [46] provides a clue to the physical meaning of the separation constant 
α.  The wavefunction of a stationary state oscillates at a frequency h/α=ω .  From the de Broglie-
Einstein relation, one has that α=ω= hE .  Hence, we can represent α as the total energy of the particle 
in the state represented with this wavefunction, i.e. 

 h/)0()( iEtet −ξ=ξ  (1-22) 
The first equation then becomes: 
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This is the time-independent SE (TISE), which is an equation of a very special form. There is a differential 
operator representing the total energy of the system, which operates on the unknown function )(xEψ  to 

produce the same function )(xEψ  multiplied by a parameter E.  Mathematicians call an equation of this 

form an eigenvalue equation where )(xEψ  is the eigenfunction and E is the corresponding eigenvalue. 

Thus, the results presented in this section can be summarized as follows: (1) If a microscopic system is 
conservative, then there exist special quantum states of the system, called stationary states, in which the 
energy is sharp. (2) Even if the number of these eigenstates is infinite, the energies of the bound states form 
a discrete list. (3) If there is a one-to-one correspondence between the quantized energies of a quantum 
system and its bound state, or stationary-state wavefunctions, then the bound state energy is non-
degenerate.  If there are stationary states for which there correspond more than one distinct spatial 
functions, such bound states are called degenerate. 

 (B) Stationary States for a Free Particle 

Let's try to solve the TISE for a free particle, for which 0)( =xV , i.e. 
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This is a homogeneous, second-order partial differential equation with constant coefficients, and the 
solution of this equation is of the form: 

 
2

2,)(
h

mEkBeAex ikxikx =+=ψ −  (1-25) 

This function is not normalizable, since it does not decay for ∞→x .  Two properties follow from the 
impossibility of normalizing this function: (1) The energies are not quantized, i.e. all values E>0 are 
allowed. (2) The energies are degenerate (+k and -k). 

 (C) Potential Step 

Our next task is to solve the TISE for one-dimensional single-particle system whose potential energy is 
piecewise constant [47]. A piecewise constant potential is one that is constant for all values of x except at a 
finite number of discontinuities-points, where it changes from one constant value to another. One of the 
simplest piecewise-constant potentials is the potential step 
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<=  (1-26) 

shown graphically in Figure 1-18. 
 

V(x)

x

V0

 
Figure 1-18. Potential step (an example of a piecewise constant potential). 
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Our task is to solve the following problem:  We assume that we have a beam of particles incident from the 
left that encounters an impulsive force at x=0. We will consider two cases: Case (a) when the energy E of 
the particle is less than V0, and Case (b) when the energy of the particle is greater than V0. 
 
Case (a): E<V0 

For this particular case, we need to distinguish between two separate regions: 

• On the left from the potential step, )(xVE >  classically-allowed region 
• On the right from the potential step, )(xVE <   classically-forbidden region 
• x=0 is called a turning point  point that separates the classically-allowed from the classically 

forbidden regions (see the figure below). 
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Figure 1-19 Description of the various regions for case (a). 
 

The solution procedure for this type of problems is the following one: 

• Write down the TISE for each region in which the potential energy is constant.  Solve the TISE up 
to arbitrary constants. 

• If necessary, apply the asymptotic condition to get physically admissible state function. 
• Match the wavefunctions and the derivatives of the wavefunctions at each of the turning points. 

 
Following the above-outlined procedure, we get the following general expressions for the wavefunctions in 
region 1 (x < 0) and region 2 (x > 0): 
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 (1-27) 

The unknown coefficients that appear in the above expression are calculated from the requirement that 
)(xψ  be continuous and smooth, which implies that it must also have continuous first derivative. 

Therefore, using the boundary conditions: 
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we get: 



  30  

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

κ+
=

κ+
κ−

=

)1(

21

1)2(

)1(

21

21)1(

2
A

ik
k

A

A
ik
ik

B
 (1-29) 

Some important conclusions that can be derived from the above equations are: 

• )1()1( AB = , which means that in region 1, two waves of equal amplitude travel in the 

opposite direction and with the same phase velocity.  Because of this, the wavefunction in region 1 
represents a standing wave. 

• The above observation suggests that the probability of reflection R(E)=1 and that of transmission 
T(E)=0. This result is just what we would expect were we applying classical physics to the 
problem. 

• In region 2, the wavefunction represents an evanescent wave, whose amplitude equals to 
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This is consistent with the previous observation that all incident particles with E<V0 are reflected back. 
Therefore, we might say that no probability flow is associated with evanescent waves. 

Case (b): E>V0 
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Figure 1-20.  Graphical description of the variables used for this case. 
 

 
Following the procedure described above, we get the following general expressions for the wavefunctions 
in region 1 and region 2: 
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The unknown coefficients that appear in the above expression are again calculated from the requirement 
that )(xψ  be continuous and smooth, which implies that it must also have continuous first derivative. 
Therefore, using the boundary conditions: 
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in this particular case we obtain: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
=

+
−

=

)1(

21

1)2(

)1(

21

21)1(

2
A

kk
k

A

A
kk
kk

B
 (1-33) 

Some important conclusions that can be derived from the above equation are: 

• Since all coefficients are real and their magnitude is in general not equal to one, we might 
conclude that the wavefunction for continuum stationary states is of the following general form: 
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We want to define the following two quantities: 

• )1()1( /)( ABE =ρ   reflection probability amplitude 

• )1()2( /)( AAE =τ   transmission probability amplitude 

Then, we can write: 
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From the probability amplitudes, one can calculate the reflection and transmission coefficients.  To do so, 
we return to the probability current densities - the fluxes - for the incident, reflected and transmitted waves. 
If we use the expression for the probability current, of the form 
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we arrive at the following results: 

 0,)(1
2

2)1(21
1 <+=⎥⎦

⎤
⎢⎣
⎡ ρ−−= xJJAE

m
keJ refinc   h

 (1-36) 

 0,)(
2

2)1(22
2 ≥=τ−= xJAE

m
keJ trans   h

 (1-37) 

If we look at the result at region 1, the probability current density 1J  equals the sum of the incident current 

and a reflected current.  In region 2, we have a transmitted current 2J .  We can, therefore, define a 
reflection probability R(E) and transmission probability T(E) in the following manner: 
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Since a particle is either reflected or transmitted, we must have that 

 T(E)+R(E)=1 . (1-40) 
For our particular problem, this gives us: 
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Therefore, in contrast to the case E<V0, our result for E>V0 does not conform to the predictions of classical 
physics. 
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Figure 1-21 A step potential of height V0=0.3 eV. The effective mass of the electrons is assumed to be 
0.067 m0, where m0 is the free electron mass. Transmission and reflection coefficient for a step potential as 
a function of the incident carrier energy. 
 

An interesting thing to plot is the magnitude squared of the wavefunctions in regions (1) and (2) as a 

function of position. The behavior of 2)(xiψ  (i=1 for region 1 and i=2 for region 2) is shown on Figure 
1-22. We use E=0.25 eV and A(1)=1. Note that the energy of the particles E is smaller than the barrier 
height. Therefore, we expect to see standing wave pattern in region 1 [since R(E)=1 for this case] and 
evanescent (exponentially-decaying solution) in region 2. 
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Figure 1-22. The magnitude squared of the wavefunction for carrier energy less than the barrier height. 

 
(D) Tunneling Through a Single Barrier 
Consider the potential barrier shown in Figure1-23, for which the potential energy term appearing in 

the 1D TISE is of the form: 
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Following the steps outlined in the previous section, it is easy to show that for energies E<V0, the general 
solution of the 1D TISE in each of the three regions, is of the form: 
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Figure 1-23.  Single potential barrier. 
 
The application of the continuity conditions of the wavefunction at the boundaries 0=x  and Lx = , 
leads to the following relationship between the unknown constants: 
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Using the above four equations, we can find the relationships between various coefficients, i.e. using matrix 
representation these relationships can be represented as: 
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In other words, we have the following  relationship between the coefficients A and B, and the coefficients E 
and F: 
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where the matrix M has elements mij.  Therefore, for coefficients A and E (using the asymptotic condition 
that F=0) we have the following simple relationship: A=m11E, i.e. the transmission coefficient is simply 
given by: 
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After a rather straightforward calculation, we arrive at the following expression for the transmission 
coefficient for particle energies less than the barrier height: 
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In the case of a weak barrier (γL<<1), the expression for the transmission coefficient simplifies to: 
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In the opposite limit, i.e. when the barrier is very strong (γL is very large), we have the following 
approximate expression for the transmission coefficient: 
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For energies larger than the barrier height, i.e. E>V0, using that γ=ik2, gives: 
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The later result is similar to the one obtained in the previous section, i.e. the transmission maxima (T(E)=1) 
occur for π= nLk2 . 

In Figure 1-24, top panel, we show several results for a potential barrier. The barrier height equals 
V0=0.4 eV, whereas the barrier  width is L=6 nm. We also show how the transmission coefficient varies 
with the width of the barrier, for fixed E and V0 (Figure 1-24, bottom panel). We consider two cases: 
particle energies smaller and larger than the barrier height. 

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0

T(
E)

Energy  [eV]

L=6 nm,  V
0
=0.4 eV

m=6x10-32 kg

 

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 5.0 10.0 15.0 20.0 25.0 30.0

E=0.2 eV
E=0.6 eVT(

E)

Barrier thickness L [nm]  

Figure 1-24.  Top panel - Variation of the transmission coefficient with energy.  Bottom panel - Variation 
of the transmission coefficient with the barrier thickness. 
 
 

The following observations can be derived from the results presented in this section: 
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• Classical physics would predict that no particles with energy E<V0 are transmitted; quantum physics 
reveals that the probability of transmission of such particles increases hyperbolically with increasing 
energy. 

• Classical physics would predict that all incident particles with E>V0 are transmitted; quantum 
mechanics shows that this condition - called total transmission - occurs only at a few discrete 
energies.  An incident particle with E>V0 that lies between these special values, determined by the 
condition π= nLk2 , may be reflected.  The probability of reflection decreases very rapidly with 
increasing the energy of the particle E. 

• For another perspective on transmission and reflection by a barrier, now let us look at the results 
shown in Figure 1-24, bottom panel.  Here, the energy of the particle E and the barrier height are fixed 
and T(E) is plotted as a function of the barrier width L.  This figure shows another bizzare result: for a 
given energy E, only barriers of certain width will transmit all particles of this energy (transparent 
barriers).  But there is no value of the width such that a barrier of this width reflects all incident 
particles, because for all values of L, the reflection coefficient R(E) is less than one. 

• Because of the hyperbolic decay of the eigenfunction in the classically forbidden region, the amplitude 
of the eigenfunction in the detector region is reduced from its value in the source region. 

 
1.2.2 Tunneling Through Arbitrary Piecewise-Constant Barrier  
We now consider the case of arbitrary number of piece-wise constant potential barriers. As in the case of a 
simple barrier, the transmission and the reflection coefficients are calculated by solving, either explicitly or 
implicitly the Schrödinger equation over the domain xL < x < xR . We assume that outside of the domain of 
interest (in the asymptotic regions), the wavefunction consists of superposition of traveling waves, and we 
write the general solution 
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In the transmission matrix approach outlined in the previous section, the domain is divided into a suitable 
number of intervals over each of which the potential can be taken to be constant, or perhaps linearly 
varying. Within each such interval, the wavefunction is expanded in terms of two independent solutions at 
the chosen energy (oppositely directed traveling waves if the potential is constant). Then the amplitudes of 
these waves at the two ends of interval i can be related by the propagation matrix Pi: 
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The appropriate matching conditions at the boundary between intervals i and i+1 must be derived from the 
form of the Hamiltonian, and are expressed by a matrix Bi which is typically of the form 
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where 1/ += ii vvr , is the velocity ratio. One can then relate the coefficients in the left asymptotic region, 

incorporate into a vector T
lll ba ],[=ψ , to those in the right asymptotic region, T

rrr ab ],[=ψ , by a 
matrix M formed from the product of the appropriate propagation and boundary matrices: 
 rmmlr PBPBBPM Ψ=Ψ=Ψ − 11221 K  (1-55) 

In practical calculations, the transmission matrix approach has proven to be less than satisfactory, 
because it is prone to arithmetic overflow. In regions where the wavefunction is evanescent, the P matrices 
contain real elements equal to the attenuation of the region and its inverse. The inverse is likely to be a very 
large positive number, and if several evanescent regions are cascaded, the numbers in the matrix will 
rapidly exceed the dynamic range of floating point variables. This problem is particularly severe when the 
transmission matrix scheme is applied to multi-band models, because at any given energy many of the 
bands will be evanescent, but it has also been observed in simple single-band calculations. The transfer 
matrix method [48,49] has been generalized to multi-dimensional systems by Frensley [37,50], Lent et al. 
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[51], and to multi-band Hamiltonians by Ting et al. [52,53]. In the latter methods the scattering boundary 
conditions are applied via the quantum transmitting boundary method (QTBM) [54], and the transmission 
is obtained via the solution of a linear system with dimensions proportional to the size of the device that has 
to be solved repeatedly. Very recently, a modified version of the QTBM has been developed that expands 
the scattering solutions in terms of two different closed system wave functions [55]. The calculations are 
charge self-consistent, but have only been implemented for single-band situations so far.  

The second class of simulators is based on the Green’s function method to calculate the quantum 
transport properties, with the coupling to the leads being introduced via the self-energy. The advantage of 
this approach is the well developed theory of the Green’s functions that also allows one to consider 
inelastic scattering within the nonequilibrium Green’s function formalism. A very efficient and widely used 
algorithm is the recursive Green’s function method [56] that has been successfully implemented for two-
dimensional devices [57,58] and for small three-dimensional structures such as nano-wires [59]. It’s main 
advantage is that it does not only yield the retarded Green’s function that is connected to the S- or T-matrix, 
but also the less-than Green’s function [57], which is needed if inelastic scattering to be considered. The 
main drawback of the method is its restriction to devices that can be discretized into cross-sectional slices 
with nearest neighbor interactions only, a condition that cannot be maintained for structures with more than 
two contacts, since additional contacts inevitably couple more distant slices with one another. For a detailed 
review of this method please see the article by Lake et al. [56]. 

Thus, although a large variety of methods has been developed in the past decades, the quantum-
mechanical ballistic multi-band transport calculation of large two- and three-dimensional structures or 
devices with more than two Ohmic contacts still presents a significant challenge. To bridge this gap, we 
have developed a novel and efficient Green’s function method to calculate the electronic properties of open 
quantum systems (such as the transmission, the density of states, the carrier density, and the current 
density) with arbitrary number of leads in the ballistic limit. To illustrate the idea we first briefly introduce 
the basics of the Green’s function approach used in the ballistic Landauer-Buttiker picture described in 
Section 3. 
 
1.2.3 Evaluation of the Current Density 
To evaluate any physical observables, such as the current density, we must specify how the scattering 
solutions are statistically weighted in the final result. For the case of a continuous spectrum of states, with 
δ-function normalization, the derivation of the correct expressions are rather tricky, because we seek 
expressions for densities of charge, current, energy, etc., rather than total quantities (which are of course 
infinite in an unbounded system). To illustrate the procedure, let us follow through the derivation of the 
electron density in a spatially uniform three-dimensional semiconductor in equilibrium. We approximate 
the conduction band structure by a simple parabolic dispersion relation: 
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where k is the wavevector. The probability that each state |k> will be occupied by an electron is given by 
the Fermi-Dirac distribution function: 
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FFD eEEf β  (1-57) 
where EF is the Fermi level or chemical potential and β = 1/kBT, T being the absolute temperature. (To 
avoid confusion with the transmission probability which is also denoted by T, the absolute temperature will 
always be shown multiplied by Boltzmann’s constant kB.) Let us now make an ad hoc assumption that the 
semiconductor crystal is a cube with each side of length L, and apply periodic boundary conditions. Then 
the stationary quantum states are plane waves (normalized to unit amplitude) of the form 
 k r

k (r) ~ ieψ ⋅  . (1-58) 
Due to the periodic boundary conditions, k must assume discrete values: 

 ( )zzyyxx nnn
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π

  , (1-59) 

where nx, ny, and nz are integers. The total number of electrons in the crystal N is just the sum over all of the 
states |k>  of the probability that each state is occupied 
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where the factor of 2 comes from the two spin states. Now, because L is large, the allowed values of k are 
very closely spaced, and the sum over k can be well approximated by an integral: 
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We can now write an expression for the density of electrons n: 
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Notice that the arbitrary crystal dimension L has dropped out of the final expression. In order to evaluate 
densities using expressions such as Eq. (1-62) it is usually more convenient to transform the integration 
variable to E. By expressing d3k in spherical coordinates and manipulating the dispersion relation one 
finds: 
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Inserting Eq. (1-63) into Eq. (1-62) leads to the usual expression for the electron density in a semiconductor 
n = NCF1/2[β(EF − EC)].  

The procedure for evaluating a physical observable in an equilibrium system of infinite extent may 
thus be generalized from the above discussion. The expectation value of the observable quantity is 
calculated for each state, taking the scattering states to be normalized to unit amplitude. The density of the 
observable is then determined by inserting this expectation value into the sum in Eq. (1-62) and evaluating 
the resulting integral, usually using the relations (1-63). The two most important observables are the 
electron density n(x) and the current density j (which is independent of position in one dimension and 
steady-state). The expectation value of the density for a state ψ is simply 
 )()(*)( xxxn ψψψ =  (1-64) 
The expectation value of j is simple, though the operator itself often is not (see Eq. (1-35)). If the dispersion 
relation E(k) is not parabolic and independent of position, the form of the operator j is not given by the 
simple textbook expression given in Eq. (1-35). The current density operator is instead whatever remains of 
the kinetic energy term of the Hamiltonian after the application of Green’s identity, and this obviously 
depends upon the form of the Hamiltonian itself. For unit-incident-amplitude scattering states, however, the 
result is invariably 
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Of course, in equilibrium, these two currents cancel each other (by the principle of detailed balance) and 
there is no net current flow.  

To investigate the transport properties of a quantum system one must generally evaluate the current 
flow through the system, and this requires that one examine systems that are out of thermal equilibrium. A 
common situation, in both experimental apparatus and technological systems, is that one has two (or more) 
physically large regions densely populated with electrons in which the current density is low, coupled by a 
smaller region through which the current density is much larger. It is convenient to regard the large regions 
as “electron reservoirs” within which the electrons are all in equilibrium with a constant temperature and 
Fermi level, and which are so large that the current flow into or out of the smaller “device” represents a 
negligible perturbation. The reservoirs represent the metallic contacting leads to discrete devices or 
experimental samples, or the power-supply busses at the system level. Consequently the electrons flowing 
from a reservoir into the device occupy that equilibrium distribution which characterizes the reservoir. In a 
simple one-dimensional system with two reservoirs, the electrons flowing in from the left-hand reservoir 
have k > 0 and those flowing from the right-hand reservoir have k < 0. Within this picture, the current that 
is injected from the left-hand reservoir is 
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and the current injected from the right-hand reservoir is 
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In order to simplify the calculation of J further, we must invoke some special properties of the system. The 
most useful such property is that symmetry which permits the separation of the spatial variables. The 
separation of variables is possible if the Hamiltonian can be separated into two parts: 
 )/,/,,()/,(|| zyzyHxxHH ∂∂∂∂+∂∂= ⊥  . (1-68) 
(Here the notation H|| and H

┴
 is defined with respect to the direction of current transport.) Then the 

wavefunction separates into a product of two factors: 
 ),()()r( || zyx ⊥= ψψψ  , (1-69) 
and the energy can be separated into a product of two terms: 
 )()()( |||| ⊥⊥+= kEkEkE  (1-70) 
The expression for the total current density J can now be simplified to 
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where V0 is the larger of the two asymptotic potentials (minimum energy for a propagating state) and F is 
the Fermi-Dirac distribution function summed over the transverse states: 
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The form of the sum over ⊥k  depends upon the spatial configuration of the tunneling system. Note that the 
velocity factor does not appear in Eq. (1-71) because it was canceled by the density of states. If the system 
in question is macroscopically large in its transverse dimensions, the ⊥k  form a two dimensional 

continuum, and *22 2/ ⊥⊥ = mkH h . Then F can be analytically evaluated and the current density can now 
be written in the form usually given for the tunneling current: 
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Note that this expression is valid in general with respect to the dispersion relation in the x direction, but 
requires a parabolic dispersion relation in the transverse directions. The separation of variables leading to 
Eq. (1-73) is never rigorously valid in a semiconductor heterostructure. The reason for this is that the 
transverse effective mass *

⊥m  will vary with semiconductor composition, which varies in the x direction. 
In principle, one must do at least a two-dimensional integral (if axial symmetry holds, otherwise a three-
dimensional integral) as implied by Eq. (1-72). Nevertheless, Eq. (1-73) is widely used to model the current 
density in heterostructure devices. The error introduced by assuming separation of variables is probably 
less severe than that due to the assumption of an infinite coherence length. 

If the transverse dimensions are constrained, but separation of variables is still possible, the transverse 
motion of the electrons consists of a discrete set of standing waves or normal modes. Such systems are 
referred to as “one-dimensional” systems, quantum wires, or electron waveguides. The symbol ⊥k  is now 
interpreted as an index for the discrete transverse modes, and the expression for the current density now 
becomes 
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2. Near-Equilibrium Steady State Transport 

The great majority of published work on the subject of quantum transport deals with conditions very 
near to thermal equilibrium, particularly with very small voltage drop across the transport system. These 
conditions are known as “linear-response regime”, because the currents induced are linear in the applied 
voltage. The reason that such circumstances have received so much attention is not due to the technological 
importance of the linear-response regime, but it is rather due to difficulty of theoretically describing 
significant departures from equilibrium, as already noted at the end of the previous section. If these 
departures are negligible, then one may invoke the well-developed machinery of equilibrium statistical 
physics and simply treat the departure from equilibrium as a small perturbation on the equilibrium state. 

One approach to linear response theory is represented by the Kubo formula for the conductivity. In this 
section we will review the linear response theory and go through the derivation of the Kubo formula for 
electrical conductivity [60,61]. In that context, we will show that the linear response of a quantum 
mechanical system can analogously be expressed in terms of functions called Green’s functions 
[62,63,64,65] which are causal in time. 

Let us consider an isolated system, the Hamiltonian of which is denoted by Ĥ . The dynamical motion 
of the system determined by ˆ H  is called the natural motion of the system. We suppose that an external 
force, or field, is applied to the system, the effect of which is represented by the Hamiltonian  ˆ H '  that is 
linear in the external field. Quantum mechanically, the initial steady-state ensemble, which statistically 
represents the initial state of the system, is specified by the density matrix ˆ ρ 0  satisfying ˆ H , ˆ ρ 0[ ]= 0  

[66]. For a grand-canonical ensemble, the density matrix is of the form 
 

  ˆ ρ 0 =
e−β( ˆ H −μ ˆ N )

tr e−β ( ˆ H −μ ˆ N )[ ] , (2-1) 

where μ   is the chemical potential and the temperature is introduced through the parameter     β = 1 kBT  . 
The density matrix is normalized to unity, i.e.  tr ˆ ρ 0( )= 1. 

The response of a quantum mechanical system to an external field can be obtained by solving the 
appropriate time-dependent Schrödinger equation or, equivalently, for macroscopic systems described 
statistically, by solving the Liouville equation 

 

    
ih

∂ ˆ ρ 
∂ t

= [ ˆ H + ˆ H ' , ˆ ρ ]
 (2-2)  

for the density matrix. In order to find the linear response of the system, one needs to  solve Eq. (2-2) to 
first order in ˆ H '  . This can be achieved with the canonical transformation [67] 

 
 ˆ σ (t) = ˆ S (t) ˆ ρ (t) ˆ S + (t)  , (2-3) 

where ˆ S   and  ˆ S +  (the adjoint of  ˆ S ) are unitary operators satisfying 
 

 
  
−ih

∂ ˆ S 
∂ t

= ˆ H ̂  S     

  (2-4) 

  
  
ih

∂ ˆ S +

∂ t
= ˆ S + ˆ H  ,  
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respectively. For Hamiltonians that do not depend explicitly on time, 
 
ˆ S (t) = exp i ˆ H t h( ). Then the 

equation of motion for the non-equilibrium density matrix ˆ σ (t)   is 
 

  [ ])(ˆ),('ˆˆ
ttH

t
i σ

∂
σ∂

=h  , (2-5) 

where ˆ H ' (t) = ˆ S (t) ˆ H ' ˆ S + (t)   is the perturbing Hamiltonian. The solution of Eq. (2-5), to first order in 
ˆ H ' , is given by 

 

   
  

ˆ σ (t) = ˆ ρ 0 −
i
h

ˆ H ' (t' ), ˆ ρ 0[ ]
0

t

∫ dt ' . (2-6) 

In the last equation, it is assumed that the perturbation ˆ H '   is turned on at t = 0. For time-independent 
Hamiltonians,  ˆ H   and  ˆ ρ 0  commute, and therefore 

  
  

ˆ ρ (t) = ˆ S +(t) ˆ σ (t) ˆ S (t) = ˆ ρ 0 −
i
h

ˆ S + (t) dt' ˆ H ' (t' ), ˆ ρ 0[ ]
0

t

∫ ˆ S (t)  . (2-7) 

Usually, one is interested in comparing the value of some macroscopic variable represented by the 
operator ˆ M  with the experiment. The quantity that needs to be compared with the experiment is the 
quantum and thermal average of   ˆ M  at time t given  by 

 

 

  

ˆ M = tr ˆ ρ (t) ˆ M { }= tr ˆ ρ 0 ˆ M { }−
i
h

tr ˆ S + (t) dt' ˆ H ' (t' ), ˆ ρ 0[ ]̂  S (t) ˆ M 
0

t

∫
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 . (2-8) 

The first term on the RHS of Eq. (2-8) is the equilibrium expectation value, and the second term gives 
the change due to the perturbation. Using the cyclic property of the trace, one can also write 

 

    

ˆ M = tr ˆ ρ 0 ˆ M { }−
i
h

tr ˆ ρ 0 dt' ˆ M (t), ˆ H ' (t' )[ ]
0

t

∫
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= tr ˆ ρ 0 ˆ M { }−
i
h

dt '
0

t

∫ ˆ M (t), ˆ H ' (t ' )[ ]
 , (2-9) 

where ˆ M ( t) = ˆ S (t) ˆ M ̂  S + (t)  . 
In semiconductor transport analysis, of major importance is finding the current response of the system 

due to the time-dependent external field. In other words, one needs to calculate the electrical conductivity 
that relates the current density J to the electric field E(r,t) which induces it, through Ohm’s law 
Jα = σαβ Eβ  . Since this is a linear relationship, the conductivity can be found by a proper application of 
the result given in Eq. (2-9). In the following calculation the electric field is introduced through the vector-
potential, so that 

 

   E(r, t) = −
∂A(r, t )

∂t
 . (2-10) 

To first order in A (and therefore in E), the perturbing Hamiltonian is 
 

    ˆ H ' = − d3r∫ ˆ j p (r) ⋅ A(r,t)  (2-11) 

where ˆ j p(r)  is the paramagnetic part of the total symmetrized current-density operator 
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 . (2-12) 
In Eq. (2-12), n  is the electron density. The result given in Eq. (2-11) is valid for the Coulomb gauge, 
∇⋅ A = 0.  Therefore, the expectation value of the total current-density operator is 

 

     

ˆ j α (r, t) = −
ne2

m* Aα (r, t) + ˆ j pα (r,t) −
i
h

dt' ˆ j pα (r, t), ˆ H ' (t' )[ ]
0

t

∫
 . (2-13) 

The first term is a direct-current response to the applied vector potential, which is essentially the 
displacement current. The second term is assumed to vanish since there is usually no current in a solid in 
the absence of the electric field. Using the form of  ˆ H '  given in Eq. (2-11), after a straightforward 
calculation one finds that the current-density components can be obtained from 

 

   

ˆ j α (r, t) = − ne2

m* Aα (r, t) + i
h

dt' d3r' ˆ j pα (r, t), ˆ j pβ (r' , t' )[ ]∫
0

t

∫
β
∑ Aβ (r' ,t' )

= −
ne2

m* Aα (r, t) − dt' d3r' Gαβ
r∫

0

∞

∫
β
∑ (r,r' ,t − t' )Aβ (r' ,t' )

 , (2-14) 
where 

 

  
  
Gαβ

r (r,r' ,t − t' ) = −
i
h

ˆ j pα (r, t), ˆ j pβ (r' , t' )[ ]θ(t − t ' )  (2-15) 

is the so-called retarded two-particle Green’s function [68]. The θ-function ensures that the effect at time t 
depends on the cause only at preceding times. In steady state, the imaginary part of the second term in Eq. 
(2-15) must cancel the displacement current since the zero-frequency conductivity must be entirely real 
function. Eq. (2-15) is known as the Kubo formula, in which the current response to an applied electric 
field is described in terms of the current-current correlation function. 

It is also possible to define the advanced Green’s function 

 
 
Gαβ

a (r,r' , t − t' ) =
i
h

ˆ j pα (r, t), ˆ j pβ (r' ,t ' )[ ]θ (t' −t)   (2-16) 

the use of which is more formal. The part of the Green’s function that multiplies the θ-function is often 
called a current-current response function or an after-effect function. 

The Eq. (2-14) includes the transient response due to switching on the field at t = 0  as well as the 
forced response. In general, it is the forced response that is usually measured and provided that the Green’s 
function includes dissipative effects, it can be obtained by extending the lower limit of the time integral to 
−∞ . Then, at any finite time, the transients will have died away and one is left with the forced response 
only. In this case, one frequency component of A will give rise to corresponding frequency component of 
J. Since for simple harmonic perturbation we have 

 

    A(r,Ω) = −
i
Ω

E(r,Ω) , (2-17) 

where Ω is the frequency, the Eq. (2-14) becomes 
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ˆ j α (r,Ω) = i
ne2

m*Ω
Eα (r,Ω) +

1
hΩ

dteiΩt

0

∞

∫ d3r' ˆ j pα (r, t), ˆ j pβ (r' , 0)[ ]∫
β
∑ Eβ (r' ,Ω)  . (2-18) 

The last result was obtained under the assumption that the current-current correlation function is only a 
function of the time difference t − t' . Then, for homogeneous electric fields, the components of the 
conductivity tensor can be simply calculated from 

 

   
  

σαβ (r,Ω) = i
ne2

m*Ω
δαβ +

1
hΩ

dteiΩt

0

∞

∫ d3r' ˆ j pα (r,t), ˆ j pβ (r' ,0)[ ]∫  . (2-19) 

For the inhomogeneous case, the conductivity tensor can be obtained by taking a spatial Fourier 
transform of Eq. (2-18) and then averaging the result over the spatial volume in order to eliminate any 
atomic fluctuations. In this case, the final result for the conductivity tensor is [69] 

 

   
  

σαβ (q,Ω) = i
ne2

m*Ω
δαβ +

1
hΩ

dteiΩ t

0

∞

∫ ˆ j pα (q, t), ˆ j pβ (−q,0)[ ]  . (2-20) 

The results given in Eqs. (2-19) and (2-20) suggest that the complete conductivity tensor for a given 
frequency of the applied electric field can be rigorously expressed in terms of the electric current 
components fluctuating spontaneously in the equilibrium state. The basis of this relationship is the 
fluctuation-dissipation theorem itself [70]. This theorem states that the current is directly proportional to the 
dissipation arising from the presence of the applied forces. Since the current-current correlation function 
describes these fluctuations, the Kubo formula is no more than a direct statement of this important theorem 
for close-to-equilibrium conditions. 

Another important result that follows from the discussion in this chapter is the fact that the linear 
response of the quantum-mechanical system can be expressed in terms of functions that are called Green’s 
functions. Since direct calculation of the retarded two-particle Green’s function for a system with strongly 
interacting particles is somewhat difficult, the path commonly followed is the following: 

 
• One first calculates the one-particle retarded 
 

  
  
Gr (x1, x2 ) = −

i
h

θ(t1 − t2 ) ˆ Ψ (x1), ˆ Ψ +(x2)[ ]  (2-21) 

and advanced 
 

  
  
Ga (x1, x2) =

i
h

θ( t2 − t1) ˆ Ψ (x1), ˆ Ψ + (x2 )[ ]  (2-22) 

Green’s functions. 
 
• After these functions are calculated, one looks for the relations between these formal Green’s 

functions and the observable ones. 
 
In summary, Eq. (2-19) is a form of the fluctuation-dissipation theorem, relating a transport coefficient, 

which necessarily characterizes a dissipative process, to the fluctuations about the equilibrium state. 
Another well-known form of the fluctuation-dissipation theorem is the Einstein relation connecting the 
mobility and the diffusivity in classical transport theory: TkqD B/=μ . The Kubo formula expresses the 
conductivity in terms of the autocorrelation of the current density; if one can calculate this autocorrelation 
function from the equations of motion, for example, one can evaluate the frequency-dependent 
conductivity. 
 

2.1 Conductance – The Landauer-Buttiker formula 

Let us consider the following system, composed by a one-dimensional channel (a quantum wire) with 
length L, and two metallic reservoirs with electrochemical potential Lμ  and Rμ ( RL μμ > ). 
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Figure 2-1. Sketch of the considered one-dimensional system. 
 
We suppose that only the first one-dimensional subband is occupied, that the electrons in the channel do 
not suffer any scattering mechanism, i.e. transport in the channel is ballistic, and that the electrons entering 
the reservoirs contacts are instantaneously in equilibrium with them. For the moment, let the temperature be 
equal to zero (T=0 K) and the contacts reflectionless, that means that the transmission probability from the 
contact to contact is unitary. Being a two-dimensional confined system, the dispersion relation is equal to 

mkkE ii 2/)( 22h+= ε , where iε  is also referred as the cut-off energy of i-th 1D subband or 
transversal mode. The positive current, carried by k > 0 states in the ith-subband, reads [71] 
  

 ( )L
k

ii Efkv
L
qI μ−= ∑

>

> )(
0

 (2-23) 

where vi  is the velocity and f is the Fermi-Dirac distribution function. Converting the summation over 
states into an integral while conserving the number of states in the system, we obtain 

 ( )dkEfkvqI Lii μ
π

−= ∫
∞> )(

0
 (2-24) 

 
and from the dispersion relation it follows that  
 

 dEEf
h
qI

i
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∫
∞> −=

ε
μ  (2-25) 

 
Equivalently, the negative current reads  
 

 dEEf
h
qI

i
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∫
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ε
μ  (2-26) 

 
If we now define the function M(E) as 
 
 ( )∑ −=

i
iEuEM ε)(  (2-27) 

where u(E) is the Heavyside function, we can express the total positive current as  

 dEEMEf
h
qdEEfqII LL

ii
i

i

)()(2)(2
∫∫∑∑

+∞

∞−

∞
>> −=−== μμ

εh
 (2-28) 

 
Working at KT 0= , the Fermi-Dirac function is a step function, and considering M(E) constant and equal 
to an integer M between the energy range ],[ RL μμ , the total current reads 

 
q

M
h
qIII RL μμ −

=−= <>
22

  . (2-29) 

We note that Eq. (2-29) can be reduced to the form I = GV, where V is the applied potential  
q

RL μμ −
 and 

G is the conductance, that in this case is  
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 M
h
qG

22
=  (2-30) 

Since the channel is purely ballistic, the resistance of the channel is equal to zero. This means that all the 
dissipation of the energy happens in the reservoirs, since a charge propagating from the left transverse the 
channel conserving the energy, and when it reaches the right reservoir, it looses energy thermalizing in the 
contact. That is why the inverse of G is often referred as the contact resistance.  

If we now relax the hypothesis of reflectionless contacts, we have the situation depicted in Figure 2-2  
 

 
 
Figure 2-2. Electrons propagating from the left contact undergo elastic scattering and T is the probability of 
reaching the other reservoir. 
 
If >

LI  is the influx of electrons from the left reservoir, <
LI  is the flux of back-scattered electrons in the left 

reservoir, and >
RI  is the flux of electrons that has reached the right reservoir (Figure 2-2), if we consider 

T(E) constant and equal to τ between the energy range RL μμ − , we deal with the following relations 
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 (2-31) 

The total current is then equal to 

 ( )RLRLL M
h
qIIII μμτ −==−= ><> 2

 (2-32)  

and the conductance in case of reflecting contacts can be expressed as  

 τM
h
qG

22
=  (2-33) 

that is the Landauer Formula [72].  
We can now study the case in which the temperature is not equal to zero. The total current now reads  

 [ ] dEETEMEfEF
h
qI RL )()()()(2

∫
+∞

∞−

−−−= μμ  (2-34) 

 
If  μμ =R  and δμμμ +=L , with μδμ << , Eq. (2-34) becomes 

 ( )[ ] dEETEMEfEF
h
qI )()()()(2

∫
+∞

∞−

−−+−= μδμμ  (2-35) 

and by means of the Taylor expansion 
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we can express Eq. (2-35) as  
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that can be reduced to  

 dEETEM
E
Ef

h
qG )()(),(2

∫
+∞

∞− ∂
∂

−=
μ

 (2-38) 

 
where EEf δμδ /),(−  is often referred as the broadening function.  

As a numerical example, we can consider the case of a QPC with reflectionless contacts in which the 
transversal potential is a harmonic potential. The transversal modes are equal to  
 ( ) 02

1 ωh−= mEtn . (2-39) 
In Figure 2-3 we show the conductance at different temperatures, as a function of the electrochemical 
potential of the reservoir ( μ ), supposing a small voltage δμ  is applied between the two reservoir, and 

eV1.00 =ωh . As can be noted, as the temperature is increased, the step-like function of the conductance 
at T=0 K is smoothed. Such an effect is due to the fact that the broadening function “broadens” over the 
energy as the temperatures increases: Eq. (2-39) can be then seen as an average over a window that 
increases as the temperature is increased. 
 

 
Figure 2-3. Conductance of a QPC with reflectionless contact at different temperatures, in which the 
transversal potential has been approximated with a harmonic potential ( eV1.00 =ωh ). 
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Figure 2-4 (a) G=(2e2/h)T/(1-T)=I/Va. (b) G=I/V=(2e2/h)T. Here, in addition to measuring the voltage drop 
across the scattering structure, one also measures the contact resistance. (c) Circuit equivalent of (b) where 
V = RcI + Va. 
Î 
 
3. Far-From-Equilibrium Transport 

3.1 Mixed States and Distribution Function 

When a system such as an electron device is driven far from equilibrium by the application of an external 
voltage, both coherent and incoherent processes will generally occur within the device. Coherent processes 
include tunneling and ballistic transport, and incoherent processes include dissipative scattering via 
phonons, for example. Coherent effects are described by adding complex-valued amplitudes (that is, values 
of the wavefunction), which is done implicitly in the solution of Schrödinger’s equation above. Incoherent 
effects are described by superposition of real-valued probabilities. An example of such incoherent 
superposition is the summation of the current density over energies and transverse modes to obtain the total 
current density. We can formalize the statistical summation procedure described there into a mathematical 
object known as the single particle density matrix [73,74] In terms of the continuum position variable x, the 
density matrix is actually a complex-valued function of two arguments, and has the general form: 
 )'()()',( * xxPxx i

i
ii ψψρ ∑=  (3-1) 

where the ψi form a complete set of states (not necessarily the eigenstates of the Hamiltonian), and the Pi 
are real-valued probabilities for finding an electron in each state ψi. With this definition, the expectation 
value of any physical observable represented by an operator A is given by: 
 ( ) ( )( )

0
, 'lim

x
A Tr A A x x dxρ ρ

→

= = ∫ , (3-2) 

where A is taken to operate with respect to the first argument of ρ. Inserting Eq. (3-1) into Eq. (3-2) and 
rearranging the expression, we get the more familiar form for the expectation value: 
 *( ) ( )i i i

i
A P x A x dxψ ψ= ∑ ∫  (3-3) 

In particular, the particle density is given by 
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 ( ) ( , )n x x xρ= , (3-4)  
and the current density is 

 
0

( ) lim * 'x

qJ x
im x x

ρ
→

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠
h

 . (3-5) 

If E(k) is non-parabolic, a more complicated expression is required for the current density.  
If the motion of the particles described by the density matrix is purely ballistic (no energy loss) and 

defined by a Hamiltonian H, the equation describing the evolution of the density matrix may be derived by 
substituting Schrödinger’s equation into Eq. (3.1). The result is the Liouville-von Neumann equation for the 
single-particle density matrix: 

 [ ] ρρρρ
ρLHH

it
≡−=

∂
∂

h

1
 (3-6) 

where Lρ is a linear operator which operates upon the density matrix and is called the Liouville operator. 
(Since it operates upon ρ, which is itself a quantum-mechanical operator, Lρ is technically a superoperator.) 
The Liouville equation acts upon the density matrix by evolving the wavefunctions, but does not change the 
probabilities Pi. This is a characteristic of ballistic, or conservative, motion. Irreversible, or dissipative, 
processes involve transitions between quantum states, and are described by operators which modify the 
probabilities Pi. Such operators are discussed below.  

In classical systems, the quantity which describes the state of the system corresponding to ρ is the 
phase-space distribution function fc(r, p) where r is now the position and p is the momentum. The classical 
Liouville equation is 
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where v is the velocity and V is the potential in which the particles are moving. The particle and current 
densities are obtainable from the classical distribution function by using 
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∫
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 . (3-8) 

The Liouville equation, in either the classical or quantum context, describes only ideal, conservative 
motion. Within the scope of these equations, particles can only oscillate within the system, unless one 
applies boundary conditions which permit particles to escape from it. The form of the equations (for closed 
systems) does not describe an approach to a steady-state, neither equilibrium nor non-equilibrium. The 
reason for this involves the eigenvalue spectrum of Lρ and Lc. The solutions of Eq. (3-6) will consist of a 
linear combination of terms with time dependence exp(- h/ti iω ), where −iωi are the eigenvalues of Lρ. 
The Liouville operator [as defined in Eq. (3-6), including the imaginary factor] is anti-Hermitian, so the 
frequencies ωi are purely real. Thus the transformation which maps the state of the system at some initial 
time into some later time is a unitary linear transformation, and we will call the behavior described by such 
equations “unitary time evolution.” Devices of course usually approach a steady state after a sufficiently 
long time. To describe this behavior, we must incorporate irreversible processes into the equations. 
 
3.1.1 Irreversible Processes and MASTER Equations 
Irreversible or energy-dissipating processes always involve transitions between quantum states. Such 
processes are described, at the simplest level, by master or rate equations [75]. The operators which 
generate the time-evolution in such equations are of a very different form from that of the Liouville 
operator. If the state of a system is described by an array of probabilities or occupation factors Pi for a 
particle to occupy a (stationary) quantum level i, the time evolution of that system is determined by the 
rates of transition between the levels i. These rates are usually estimated using the “Fermi Golden Rule” 

 ( )jiij EEjHiW −= δπ 2

int
2
h

 (3-9) 

where Hint is the Hamiltonian describing the interaction that causes the transitions, and Wij is the transition 
rate from state j to state i. The δ-function ensures energy conservation, but it must be remembered that Ei 
and Ej are the total energy of each state, including, for example, the energy in an emitted phonon. Thus Eq. 
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(3-9) can describe energy-dissipating processes despite its appearance. If one assumes that these transitions 
occur independently within any small time interval (the Markov assumption), the transition from state j to 
state i will produce changes in the corresponding occupation factors: 
 dtPWdPdP jijji =−=  (3-10) 
The occupation of state i increases and that of state j decreases as a result of this particular process, and the 
amount of change depends only upon the occupation of the initial state. (We neglect here the Pauli 
exclusion principle, which leads to nonlinear master equations.) If we sum over all possible transition 
processes, we obtain the master equation: 

 [ ] MPtPWtPW
dt
dP

j
ijijij

i =−= ∑ )()( , (3-11) 

where M is the master operator, whose matrix elements are given by 

 
⎪⎩

⎪
⎨
⎧

=−
≠

= ∑ ≠
jiW

jiW
M

ij ij

ij
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Notice the form of this operator and remember that Wii = 0. The off-diagonal elements are all positive and 
the diagonal elements are all negative, with a magnitude equal to the sum of the off-diagonal elements in 
the same column. (If one considers an open system, the coupling to external reservoirs can lead to master 
operators in which the magnitude of the diagonal elements exceeds the sum of the off-diagonal elements.) 
The eigenvalues of an operator of this form will all have real parts less than or equal to zero. Thus the 
solutions of Eq. (3-11) will consist of a linear combination of terms with a decaying exponential time-
dependence, and so will always show a stable approach to some steady state. The Pauli master equation 
[76] is the most commonly used model of irreversible processes in simple quantum systems. It can be 
derived from elementary quantum mechanics plus a Markov assumption. There are a number of conceptual 
problems with the Pauli equation, not the least of which is that it produces violations of the continuity 
equation. It is nevertheless employed, either explicitly or implicitly, in almost all semi-classical treatments 
of electron transport in semiconductors.  

Master operators most often occur in the description of stochastic (random) processes, where they 
describe the average behavior of the system. In such cases there will always be fluctuations (noise) about 
the solution of the master equation. Diffusion phenomena are the classic example of this. The master 
operator in the classical diffusion equation ∂n/∂t = nD 2∇  is just the laplacian 2∇ . By examining the 
form of the finite-difference approximation to the second derivative, it is easy to see that this has the form 
of a master operator. 
 
3.1.2 The Boltzmann Equation 
In this section we will start from semiclassical principles and derive the semiclassical master equation, also 
known as the Boltzmann transport equation. We first note that in device simulations, to completely specify 
the operation of a device, one must know the state of each carrier within the device. If carriers are treated as 
classical particles, one way of specifying the state of the carriers is to solve Newton’s equations 

 ( , , ) and ( )p rE r p        vd de R t t
dt dt

= − + = , (3-13) 

where ( , , )r pR t  is a random force function due to impurities or lattice vibrations or other imperfections 
in the system. Alternative approach would be to calculate the probability of finding a carrier with crystal 
momentum k at position r at time t, given by the distribution function f(r,k,t), obtained by solving the 
Boltzmann transport equation (BTE) [77,78,79]. It is important to note that this theory is based on the 
following assumptions: 

• Electrons and holes are independent particles. 
• The system is described by a set of Bloch functions [80,81]. 
• Particles do not interact with each other, but may be scattered by impurities, phonons, etc. 
• The number of electrons in an elementary volume ΔV centered around r, that have 

wavevectors in the range of d3k centered around k is given by 3
32 ( , , )

8
r kV f t d k

π
Δ

×  
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Therefore, once the distribution function is specified, various moments of the distribution function can give 
us particle density, current density, energy density, etc. More precisely 

 
1( , ) ( , , )r r k

k
n t f t
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= ∑ , particle density (3-14) 
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et f t
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= − ∑ , current density (3-15) 
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V
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A full quantum-mechanical view to this problem is rather difficult [82,45]. The uncertainty principle 
states, for example, that we can not specify simultaneously the position and the momentum of the particle. 
Hence, one needs to adopt a coarse-grained average point of view, in which positions are specified within a 
macroscopic volume, and momenta are also specified within some interval. If one tries to go 
straightforwardly and construct f(r,k,t) from the quantum-mechanical wavefunctions, difficulties arise since 
f is not necessarily positive definite. 
 
 (A) Approximations made for the distribution function 

The most difficult problem in device analysis is to calculate the distribution function f(r,k,t). To 
overcome these difficulties, reasonable guess for the distribution function is often made. Two most 
commonly used approaches are: 

• Quasi-Fermi level concept. 
• Displaced Maxwellian approximation for the distribution function.\ 

 Under equilibrium conditions 2
inp n= , where n is the electron concentration, p is the hole 

concentration and ni is the intrinsic carrier concentration which follows from the use of the equilibrium 
distribution functions for electrons and holes, i.e. 
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Under non-equilibrium conditions, it may still be useful to represent the distribution functions for electrons 
and holes as 
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Therefore, under non-equilibrium conditions and assuming non-degenerate statistics, we will have 

exp , and exp      V FpFn C
C V

B B

E EE En N p N
k T k T
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= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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where NC and NV are the effective density of states of the conduction and valence band, respectively, and 
EFn and EFp are the electron and hole quasi-Fermi levels [83,84]. The product 

2 exp Fn Fp
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E E
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⎝ ⎠  (3-20) 
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suggests that the difference EFn - EFp  is a measure for the deviation from the equilibrium. However, this 
can not be correct distribution function since it is even in k, which means that it suggests that current can 
never flow in a device. The fact that makes it not so unreasonable is that average carrier velocities are 

usually much smaller than the spread in velocity, given by 
72 * 10 / for   Bk T m cm s≈

  m* = m0 
(free electron mass). 
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Figure 3-1. Energy band profile of a pn-diode under equilibrium and non-equilibrium conditions. Note that 
to get the excess electron density (bottom right panel) the electron quasi-Fermi level must move up (top 
right panel), thus increasing the probability of state occupancy. The same is true for the excess hole 
concentration, where the hole quasi-Fermi level moves downward. 

A better guess for the distribution function f(r,k,t) is to assume that the distribution function retains its 
shape, but that its average momentum is displaced from the origin. For example, particularly suitable form 
to use is [85] 

2
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Figure 3-2. Displaced Maxwellian distribution function. 

Using this form of the distribution function gives 

01( , ) ( , , ) expr r k Fn C
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 . (3-22) 

In the same manner, one finds that the kinetic energy density per carrier u(r,t) is given by 

21 3( , ) *
2 2

r d Bu t m v k T= +
 . (3-23) 

The first term on the RHS of Eq. (3.23) represents the drift energy due to average drift velocity, and the 
second term is the well known thermal energy term due to collisions of carriers with phonons [86]. 
 Since in both cases, the guess for the non-equilibrium distribution has been guided by the form of 
the equilibrium, they are only valid in near-equilibrium conditions. For far-from-equilibrium conditions, the 
shape of the distribution function can be rather different [87]. This necessitates the solution of the 
Boltzmann transport equation that is introduced in the following section. 
 

(B) Boltzmann transport equation 

To derive the BTE consider a region of phase space about the point 
( , , , , , )x y zx y z p p p

. The 
number of particles entering this region in time dt is equal to the number which were in the region of phase 
space (x-vxdt,y-vydt,z-vzdt,px-Fxdt,py-Fydt,pz-Fzdt) at a time dt earlier. If f(x,y,z,px,py,pz) is the distribution 
function  which expresses the number of particles per quantum state in the region, then the change df which 
occurs during time dt due to the motion of the particles in coordinate space and due to the fact that force 
fields acting on the particles tend to move them from one region to another in momentum space is [88]: 
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Using Taylor series expansion, we get 

r pv Fdf f f
dt

= − ⋅∇ − ⋅∇
 (3-25) 

So far, only the change in the distribution function due to the motion of particles in coordinate space and 
due to the momentum changes arising from the force fields acting on the particles have been accounted for. 
Particles may also be transferred into or out of a given region in phase space by collisions or scattering 
interactions involving other particles of the distribution or scattering centers external to the assembly of 
particles under consideration. If the rate of change of the distribution function due to collisions, or 

scattering, is denoted by ( )coll
f t∂ ∂

, the total rate of change of f  becomes 

( , , )r pv F
coll
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∂  (3-26) 

i.e. 



  53  

( , , )r p+v F
coll

df ff f s r p t
dt t

∂
⋅∇ + ⋅∇ = +

∂  (3-27) 

The last term on the RHS of Eqs. (3-26) and (3-27) occurs when generation-recombination processes play 
significant role. Eq. (3-27) represents the Boltzmann transport equation, which is nothing more but a book-
keeping equation for the particle flow in the phase space.  

 

Figure 3-3. A cell in two-dimensional phase space. The three processes, namely drift, diffusion, and 
scattering, that affect the evolution of f(r,p,t) with time in phase space are shown. 

The various terms that appear in Eq. (3-27) represent 

• 
( ) pF

forces
f t f∂ ∂ = − ⋅∇

, where 
( )p kF E v Bd d q

dt dt
= = = + ×h

, the total force 
equals the sum of the force due to the electric field and the Lorentz force due to the magnetic 
flux density, B. 

• 
( ) rv

diff
f t f∂ ∂ = − ⋅∇

. This term arises if there is a spatial variation in the distribution 
function due to concentration or temperature gradients, both of which will result in a diffusion 
of carriers in coordinate space. 

• ( )coll
f t∂ ∂

 is the collision term which equals the difference between the in-scattering and 
the out-scattering processes, i.e. 

[ ] [ ]{ }
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( ', ) ( ') 1 ( ) ( , ') ( ) 1 ( ')k k k k k k k k
kcoll

f S f f S f f Cf
t

∂⎛ ⎞ = − − − =⎜ ⎟∂⎝ ⎠
∑

)

 (3-28) 

 The presence of f(k) and f(k’) in the collision integral makes the BTE rather complicated integro-
differential equation for f(r,k,t), whose solution requires a number of simplifying assumptions. In the 
absence of perturbing fields and temperature gradients, the distribution function must be the Fermi-Dirac 
function. In this case, the collision term must vanish and the principle of detailed balance gives for all k and 
k’ and all scattering mechanisms 
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Therefore, if the phonons interacting with the electrons are in thermal equilibrium, we get 

( , ') exp
( ', )

k k'k k
k k B

E ES
S k T

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠ . (3-30) 

This relation must be satisfied regardless of the origin of the scattering forces. If, for example, we assume 

k k'E E> , then ( , ')k kS  which involves emission must exceed ( ', )k kS  which involves absorption. 
Note that the BTE is valid under assumptions of semi-classical transport: effective mass approximation 
(which incorporates the quantum effects due to the periodicity of the crystal); Born approximation for the 
collisions, in the limit of small perturbation for the electron-phonon interaction and instantaneous 
collisions; no memory effects, i.e. no dependence on initial condition terms. The phonons are usually 
treated as in equilibrium, although the condition of non-equilibrium phonons may be included through an 
additional equation [89]. 

(C) Scattering Processes 
Free carriers (electrons and holes) interact with the crystal and with each other through a variety of 

scattering processes which relax the energy and momentum of the particle.  Based on first order, time-
dependent perturbation theory, the transition rate from an initial state k in band n to a final state k’ in band 
m for the jth scattering mechanism is given by Fermi’s Golden Rule [90]  

 [ ] ( ) ( )ωδπ
hm

h
kkkrkkk EEnVmmn jj −′=′Γ ′

2
,,2,;,  (3-31) 

where Vj(r) is the scattering potential of this process, Ek  and Ek’ are the initial and final state energies of 
the particle.  The delta function describes conservation of energy, valid for long times after the collision is 
over, with hω the energy absorbed (upper sign) or emitted (lower sign) during the process.  The total rate 
used to generate the free flight is then given by 

 [ ] ( ) ( )∑
′

′ −′=Γ
k

kkkrkk
,

2
,,2,

m
jj EEnVmn ωδπ

hm
h

 . (3-32) 

There are major limitations to the use of the Golden rule due to effects such as collision broadening 
and finite collision duration time [91].  The energy conserving delta function is only valid asymptotically 
for times long after the collision is complete.  The broadening in the final state energy is given roughly by 

τh≈ΔE , where τ  is the time after the collision, which implies that the normal E(k) relation is only 
recovered at long times.  Attempts to account for such collision broadening in Monte Carlo simulation have 
been reported in the literature [92,93], although this is still an open subject of debate.  Inclusion of the 
effects of finite collision duration in Monte Carlo simulation have also been proposed [94,95].  Beyond 
this, there is still the problem of dealing with the quantum mechanical phase coherence of carriers, which is 
neglected in the scatter free-flight algorithm of the Monte Carlo algorithm, and goes beyond the semi-
classical BTE description. 
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Figure 3-4.  Scattering mechanisms in a typical semiconductor. 

Figure 3-4 lists the scattering mechanisms one should in principle consider in a typical Monte Carlo 
simulation.  They are roughly divided into scattering due to crystal defects, which is primarily elastic in 
nature, lattice scattering between electrons (holes) and lattice vibrations or phonons, which is inelastic, and 
finally scattering between the particles themselves, including both single particle and collective type 
excitations.  Phonon scattering involves different modes of vibration, either acoustic or optical, as well as 
both transverse and longitudinal modes. Carriers may either emit or absorb quanta of energy from the 
lattice, in the form of phonons, in individual scattering events. The designation of inter- versus intra-valley 
scattering comes from the multi-valley band-structure model of semiconductors, and refers to whether the 
initial and final states are in the same valley or in different valleys. 

The basic Monte Carlo algorithm may be used to track a single particle over many scattering events in 
order to simulate the steady-state behavior of a system.  However, for improved statistics over shorter 
simulation times, and for transient simulation, the preferred technique is the use of a synchronous ensemble 
of particles, in which the basic Monte Carlo algorithm is repeated for each particle in an ensemble 
representing the (usually larger) system of interest until the simulation is completed.  Since there is rarely 
an identical correspondence between the number of simulated charges, and the number of actual particles in 
a system, each particle is really a super-particle, representing a finite number of real particles.  The 
corresponding charge of the particle is weighted by this super-particle number. Figure 3-5 illustrates an 
ensemble Monte Carlo simulation in which a fixed time step, Δt, is introduced over which the motion of all 
the carriers in the system is synchronized.  The squares illustrate random, instantaneous, scattering events, 
which may or may not occur during a given time-step.  Basically, each carrier is simulated only up to the 
end of the time-step, and then the next particle in the ensemble is treated.  Over each time step, the motion 
of each particle in the ensemble is simulated independent of the other particles.  Nonlinear effects such as 
carrier-carrier interactions or the Pauli exclusion principle are then updated at each times step. 
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Figure 3-5. Ensemble Monte Carlo simulation in which a time step, Δt, is introduced over which the motion 
of particles is synchronized.  The squares represent random scattering events. 
  
 (D) Statistical Averaging 
 The non-stationary one-particle distribution function and related quantities such as drift velocity, 
valley or subband population, etc., are then taken as averages over the ensemble at fixed time steps 
throughout the simulation.  For example, the drift velocity in the presence of the field is given by the 
ensemble average of the component of the velocity at the nth time step as  

 ( ) ( )∑
=

Δ≅Δ
N

j

j
zz tnv

N
tnv

1

1
,  (3-33) 

where N is the number of simulated particles and j labels the particles in the ensemble.  This equation 
represents an estimator of the true velocity, which has a standard error given by  
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where σ2 is the variance which may be estimated from [96] 
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Similarly, the distribution functions for electrons and holes may be tabulated by counting the number 
of electrons in cells of k-space.  From Eq. (3-34), we see that the error in estimated average quantities 
decreases as the square root of the number of particles in the ensemble, which necessitates the simulation of 
many particles.  Typical ensemble sizes for good statistics are in the range of 104 − 105 particles.   Variance 
reduction techniques to decrease the standard error given by Eq. (3-34) may be applied to enhance 
statistically rare events such as impact ionization or electron-hole recombination. 

 
(E) Ensemble Monte Carlo 
An overall flowchart of a typical Ensemble Monte Carlo (EMC) simulation is illustrated in Figure 3-6.  

After initialization of run parameters, there are two main loops, and outer one which advances the time step 
by increments of ΔT until the maximum time of the simulation is reached, and an inner loop over all the 
particles in the ensemble (N), where the Monte Carlo algorithm is applied to each particle individually over 
a given time step. 
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Figure 3-6  Flow chart of an Ensemble Monte Carlo (EMC) simulation. 
 

As an example of the calculated results for the EMC algorithm illustrated in Figure 3-6, Figure 3-7 
shows the calculated velocity in the direction of the electric field (drift velocity) versus time for GaAs at 
300K for various electric fields, in which the ensemble of carrier is initially in equilibrium, and then a 
constant electric field is abruptly turned on at zero.  The model used here is a non-parabolic three valley 
model, consisting of a central valley surrounded by satellite valleys in the X and L directions.  Scattering 
mechanisms included are polar optical phonon scattering, acoustic deformation potential scattering, 
intervalley non-polar optical scattering, and ionized impurity scattering (impurity concentration = 1.0× 
1014/cm3). The first thing to note is that there is a transient period which may last over several picoseconds, 
before the carriers reach a steady state situation.  For very short times, the motion of particles is almost 
ballistic (free of scattering) as they accelerate freely in time.  As scattering begins to occur, the carrier 
acceleration slows, and the velocity reaches a peak (overshoot) before settling to a steady state. The 
overshoot velocity becomes more pronounced at higher fields, and is related to differences in the 
momentum and energy relaxation times in the system associated with scattering, as well as inter-valley 
transfer which occurs when carriers are accelerated high enough in energy to overcome the energy 
difference of the valleys (approximately 0.28 eV in GaAs).   
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Figure 3-7  Drift velocity versus time in an EMC simulation for electrons in GaAs at 300K for various 
electric fields.  
 

Figure 3-8 shows the steady state drift velocity versus electric field, calculated by waiting until the 
electron velocity in Figure 3-7 reaches steady state, and then performing averages in time and over the 
ensemble to calculate the stationary velocity for a given field.  As can be observed, the velocity versus field 
is initially linear in the field, with the slope given by the low field mobility of GaAs.  At the peak of the 
velocity-field curve, the velocity saturates and then decreases, due to the transfer of carriers from the higher 
mobility central valley, to the lower mobility satellite valleys.  This mechanism is responsible for a region 
of negative resistance and corresponding Gunn oscillations due to the ensuing instability associate with 
negative resistance [97].   
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Figure 3-8  Average drift velocity versus electric field for Bulk GaAs at 300K. 
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3.2   The Wigner Distribution Function 

The Wigner distribution function is a mathematical transform of the density matrix which approaches 
the classical distribution function fC as the system becomes classical (with large dimensions, slowly varying 
potentials, and/or high temperatures) [98,99]. This representation of the statistical state has proven to be 
useful in modeling quantum-effect devices such as the resonant-tunneling diode [100,101]. 

To derive the Wigner function from the density matrix ρ(x,x’) defined in Eq. (3-6) one rewrites the 
arguments )',( xx  as )'(2

1 xxr +=  and '' xxr −= , and then Fourier transforms r’ into a momentum 
variable p. Thus 

 h/'
2
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2
1 )','('),( ipr
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−+= ∫ ρ  (3-36) 

Applying the same procedure (which is known as the Wigner-Weyl transformation) to the Liouville-von 
Neumann equation gives: 
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where the kernel of the potential operator is given by: 
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Let us examine the form of these equations. Because Eq. (3-37) is derived from Eq. (3-6) by a 
mathematical transformation, we would expect that it should also describe unitary time evolution. The 
condition for unitary evolution is that LW be an anti-Hermitian operator. The potential operator is anti-
Hermitian [because VW(r,−p) = −VW(r, p)], and the drift term is anti-Hermitian if periodic boundary 
conditions are imposed. On the other hand, we have seen that if initial conditions are imposed, the drift 
term is a master operator, and the equation then describes irreversible time evolution. This is the origin of 
the usefulness of the Wigner representation for describing electron devices. One applies boundary 
conditions to fW so as to fix the distribution of electrons entering the domain: 
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where fl(p) and fr(p) are the distribution functions in the left- and right-hand contacts (reservoirs), 
respectively. Because these boundary conditions introduce irreversibility into the Liouville equation, one 
can now evaluate the time-evolution of a device, and observe an approach to steady-state. Inelastic 
processes such as phonon scattering may be included in a semi-classical way by adding the Boltzmann 
collision term  [102], or by even simpler schemes such as the relaxation time approximation [101]. The 
open-system Wigner function approach has proved to be of use in understanding the behavior of resonant-
tunneling diodes. This technique permits evaluation of steady-state behavior in the form of the I(V ) curve, 
and calculations of the large-signal transient response and small-signal ac response. The I(V ) curves 
derived from this model show the expected negative differential-conductance region, but the ratio of the 
peak to valley currents is always smaller than that obtained from the tunneling theory, and is often less than 
that observed experimentally. Recently, Tsuchiya and co -workers have developed an improved 
formulation of the Liouville equation which takes the spatial variation of the effective mass into account, 
and which leads to larger peak-to-valley ratios than the simpler theory [103]. 

 
3.3  Green’s Functions 

In single-time approaches, such as the density matrix (first proposed and used by von Neumann [104]) 
and Wigner function approaches [98], the spectral density function is integrated out of the problem, but the 
full spatially non-local nature of the potential interactions is retained. The problem with the density matrix 
in many semiconductor applications is that it is a real space function, and only considers quantum 
interference effects occurring between two separated points in space. When the physical problem is one 
that is better understood in terms of phase-space distributions, the Wigner function approach has an 
advantage over the density matrix method. 
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Both of the previously mentioned approaches include correlations in space, but they do not consider 
that there may be correlations in the time domain (they are Markovian in time). Transport equations that 
overcome the limitations of the previously mentioned methods and include the quantum effects properly, 
may be derived by the non-equilibrium Green's function technique. The introduction of quantum-field 
theoretical methods in non-equilibrium statistical mechanics evolved from the work of Martin and 
Schwinger [105] and Schwinger [106]. Significant further developments in this area were due to Kadanoff 
and Baym [107]. Essentially the same theory was developed by Konstantinov and Perel [108], 
Dzyaloshinski [109], Keldysh [110], Abrikosov et al. [111] and others. The equivalence between the 
Kadanoff-Baym and Keldysh formalism was elegantly demonstrated by Langreth [112]. Several review 
articles focusing on different aspects of this subject exist in the literature [113,114]. 

Green's functions or correlation functions [115], which are thermodynamic averages of the products of 
field operators ˆ Ψ (x1)  and ˆ Ψ +(x2) , play a fundamental role in statistical physics and they constitute the 
connection between experimentally relevant quantities and conveniently calculable ones. 

In the discussion of the linear response of the system, we already introduced the retarded and advanced 
Green’s functions through the definitions 

 
  
Gr (x1, x2 ) = −

i
h

θ(t1 − t2 ) ˆ Ψ (x1), ˆ Ψ + (x2 ){ }  (3-40) 

and 

 
  
Ga (x1, x2) =

i
h

θ( t2 − t1) ˆ Ψ (x1), ˆ Ψ +(x2){ }  , (3-41) 

respectively. As previously mentioned, the brackets symbolize an ensemble average, or a summation over 
the proper basis. In general, at zero temperature and in equilibrium, the brackets denote the ground state of 
the interacting system. At finite temperature and in equilibrium, the brackets imply thermodynamic average 
over all possible states of the system. For systems out of equilibrium, the brackets signify the need to 
average over the available states of the system, since the concept of thermodynamic averaging is 'ill 
defined'. 
 

 
 

Figure 3-9. Cartoon of single-electron Green’s function. 
 

For simple Hamiltonians, the Green's functions (see Figure 3-9) can be obtained from the Schrödinger 
or Liouville equation. For complicated Hamiltonians, one usually applies the perturbation approach (see 
Figure 3-10 for simple explanation) in which the generation of the perturbation series relies upon the S-
matrix expansion of the unitary operator 
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where ˆ V (t)  is the perturbing potential interaction written in the interaction representation and T  is the 
time-ordering operator. The time-ordering operator placed in front of several functions of time is actually 
an instruction to order the functions according to their time-ordering with the earliest time to the right. 
 

 
 

Figure 3-10. Classical analog of the perturbation series expansion – the drunken man problem. 
 

In equilibrium situations, the states of the system are well defined for times   t1 → −∞  and     t2 → +∞ . 
However, the above scheme can not be applied to non-equilibrium situations, which is the normal case in 
nearly all active semiconductor devices. The basic reason is the fact that, in general, within the evolution, 
no state of the system in the future may be identified with any of the states in the past. The procedure for 
avoiding this dilemma was proposed by Blandin et al. [116]. They suggested that the integration path in the 
S-matrix be a time-loop shown in Figure 3-11. 
 

    t0 − ihβ

t0

t

 
 

Figure 3-11. Integration path for real-time Green’s functions proposed by Blandin et al. 
 

With this choice of the contour, the evolution of the system is assumed to begin with a thermal Green’s 
function at   t' = t0 − ihβ , where β is the inverse temperature. It then evolves into the non-equilibrium, but 
non-interacting Green’s function at t0 . The contour then extends forward in time, up to the maximum of 
(t1, t2) , at which point it is returned backward in time at t0 , where presumably, one knows the states of the 
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system. For situations, where initial correlations can be neglected, such as far-from-equilibrium stationary 
transport, we can discard the contribution of the contour from to − iβ  to to   and invoke the limit 
t0 → −∞ . 

When dealing with nonequilibrium situations, one also needs to define less-than 

 
  
G< (x1, x2 ) =

i
h

ˆ Ψ +(x2) ˆ Ψ (x1)  (3-42) 

and greater-than 

 
  
G> (x1, x2 ) = −

i
h

ˆ Ψ (x1) ˆ Ψ +(x2)  (3-43) 

correlation functions, which have time arguments that are on different branches of the contour, as shown on 
Figure 3-12a. One can also define Green's functions that have time arguments on the same branch of the 
contour (Figure 3-12b). These are time-ordered 
 Gt (x1, x2 ) = θ(t1, t2)G >(x1, x2) + θ (t2 ,t1)G< (x1,x2) = Gr + G< = Ga + G >   (3-44) 
and anti-time-ordered 

     Gt ( x1, x2 ) = θ(t2,t1)G >( x1, x2 ) + θ(t1, t2)G< ( x1, x2) = G> − Gr = G< − Ga   (3-45) 

Green's functions. The function     θ( t1, t2)  is defined on the contour with the property:     θ( t1, t2) =1 if   t1  is 
later on the contour than     t2  and     θ( t1,t2) =0 if earlier. 
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Figure 3-12. Definition of the four Green’s functions that have time arguments on different legs (a) and 
same legs (b) of the time-loop path. 
  

The natural question that arises after this rather formal introduction of the various Green's functions is 
wheather we can associate some physical meaning to them. If we look at the RHS of the equation for  G< , 
for     x1 = x2  it is proportional to the particle density, and for equal times it corresponds to the reduced 
single-particle density matrix. Hence, this quantity describes the kinetics of the system. By similar 
arguments, one finds that   G>  may be seen as corresponding to the density of the missing particles (holes). 
The spectrally decomposed time-ordered and anti-time-ordered Green's functions possess propagator forms, 
whereas the retarded and advanced Green's functions contain the spectral properties of the system, i.e., the 
information of the single-particle energy renormalizations. 

Similar types of Green's functions may also be defined for phonon fields: 
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 D>(x1, x2) = −i ˆ H e− ph(x1) ˆ H e− ph (x2)  (3-46) 

 D<(x1, x2) = −i ˆ H e− ph(x2) ˆ H e− ph(x1)  (3-47) 

 Dt(x1, x2) = θ (t1, t2 )D> (x1, x2 ) + θ(t2 ,t1)D<(x1,x2)  (3-48) 

 Dt (x1, x2 ) = θ(t2,t1)D> (x1,x2) + θ(t1, t2)D<(x1, x2 )  (3-49) 

 Dr(x1, x2) = Dt − D< = D> − Dt − θ (t1,t2 ) D> − D<( ) (3-50) 

 Da(x1, x2 ) = Dt − D> = D< − Dt − θ( t2, t1) D> − D<( ) (3-51) 

where ˆ H e −ph (x)  is the second quantized form of the perturbation due to the electron-phonon interaction 

 ˆ H e −ph (x) = Mqλ eiq⋅r ˆ a qλ e−iωqλ t + ˆ a -qλ
+ eiωqλ t( )

q
∑  . (3-52) 

The main difference between the expressions for fermion and boson fields is that D>  and D<  have the 
same sign which follows from commutation relations obeyed by boson fields. In equilibrium, greater-than 
and less-than Green’s functions can be expressed in terms of the phonon occupation number 

  
Nqλ = ) a qλ

+ ˆ a qλ : 

 D>(x1, x2) = −i Mqλ
q

∑
2

Nqλ +1( )e−iω qλ (t1 −t 2 ) + Nqλeiω qλ (t1 −t 2 )[ ]eiq⋅(r1 −r2 )   (3-53) 

 D<(x1, x2) = −i Mqλ
q

∑
2

Nqλ +1( )eiωqλ (t1 −t 2 ) + Nqλ e−iω qλ (t1 −t 2 )[ ]eiq⋅(r1 −r2 )  .  (3-54) 

The equilibrium form of the retarded phonon Green’s function is 

 Dr(x1, x2) = −2θ (t1 − t2) Mqλ

2
eiq⋅( r1 −r 2 ) sin ωqλ t1 − t2( )[ ]

q
∑  . (3-55) 

The other three Green’s functions are found easily from these three. The meaning of the various boson 
Green’s functions is equivalent to the one for fermion fields. 

A quantity that now possesses a simple perturbation expansion on the contour, is the contour-ordered 
Greens function 

 Gck
(x1, x2 ) = −i Tck

ˆ Ψ (x1) ˆ Ψ + (x2)( )  (3-56) 

where   ck  is the contour from Figure 3.12 and  Tck
 is the contour-ordering operator. To obtain a 

perturbation expansion for the contour-ordered Green's function, one could employ the standard functional 
derivative method due to Schwinger, as explained in detail by Kadanoff and Baym, or use the equivalent 
procedure based on the statistical Wick's theorem. The Feynman rules, which result from the application of 
the Wick decomposition to a perturbation expansion, are similar to the conventional ground-state Feynman 
rules. The only difference is that to each line, we now associate the contour-ordered Green's function, 
which can also be written in the matrix notation [117,118] 

 GC(x1,x2) =
Gt G<

G> Gt 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  (3-57) 

by the prescription that the ij-component of the GC-matrix (or Keldysh matrix) be defined as     Gck
( x1, x2 )  

for     t1  and     t2  residing on the segments  ci  and  c j , respectively. For example, we can write the 11 element 

by assuming contour ordering as 
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 G11(x1, x2) = θ t1,t2( )G >(x1, x2) + θ t2,t1( )G<(x1,x2) ≡ Gt(x1,x2)  . (3-58) 
In a similar manner the 22-term yields the anti-time ordered Green’s function Gt . The 12-term is the one 
that has time t1  on leg c1  and time t2  on leg c2 . Since the upper branch of the contour (leg c2 ) 
corresponds to later times compared to the lower branch (leg c1), t2  is later on the contour than t1  . Thus, 
the contour ordering operator in Eq. (3-56) will flip the order of the creation and annihilation operators, 
which results in a sign change into the definition of the contour-ordered Green’s function. Then 

 
  
G12(x1, x2 ) =

i
h

ˆ Ψ +(x2) ˆ Ψ (x1) = G<(x1,x2)  . (3-59) 

By similar arguments, the 21-term becomes G>  . 
The components of GC are not linearly independent, and by performing a nonunitary transformation it 

is possible to remove part of the redundancy. Such a coordinate transformation, often called rotation in 
Keldysh space, is given by GK → Lτ3GCL+ , where 

 
    
L =

1
2

1 −1
1 1

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ , L+ =
1
2

1 1
−1 1

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ and τ3 =
1 0
0 −1

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  . (3-60) 

The new matrix Keldysh Green’s function is of the form 

 GK (x1, x2) =
Gr GK

0 Ga

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥   , (3-61) 

where   GK = G> + G <  is the so-called Keldysh Green’s function. 
Under the assumption that the individual field operators are based upon wave-functions which satisfy 

the Schrödinger equation, one can calculate the equations of motion for the various Green’s functions. For 
single-point potentials, such as those arising from the solution of the Poisson equation, the equations of 
motion for GK  are of the form: 

 
  

ih
∂

∂ t1
− Ho r1( )− V r1( )

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ GK 0(x1, x2 ) = δ(x1,x2)I   , (3-62) 

 
  

−ih
∂

∂t2
− Ho r2( )− V r2( )

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ GK0(x1, x2) = δ (x1, x2 )I  , (3-63) 

where I is the identity matrix, V(r)  is the single-point potential and the subscript “0” is added to indicate 
the non-interacting form of the Green’s functions. These, so-called bare Green’s functions, in the quasi-
particle picture often used in quantum-field theory represent the bare particle just added to the system. 

We have stated several times earlier that transport arises as a balance between the driving forces and 
the dissipative forces. In the Green’s functions formalism, these dissipative mechanisms are introduced 
through the self-energy terms. Using the perturbation expansion, one can define the self-energy functions Σ 
as an irreducible part of the Green's function. The self-energy may also in principle be introduced 
variationally. For electrons in a solid, important self-energy contributions are provided by the driving 
forces and electron interaction with other electrons, ions in the lattice, impurities and phonons. Expressing 
the self-energy functions in the matrix form, it is possible to write the equations of motion for the full 
Green’s function as 

  
ih

∂
∂ t1

− Ho r1( )− V r1( )
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ GK (x1,x2) = δ(x1, x2 )I + dx3∫ Σ K (x1, x3)GK (x3, x2 )  , (3-64)

 

  
−ih

∂
∂t2

− Ho r2( )− V r2( )
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ GK (x1, x2 ) = δ(x1, x2 )I + dx3∫ GK (x1, x3)ΣK (x3, x2 )  , (3-65) 

where the self-energy matrix is the one that has the Keldysh form 

 Σ K =
Σr ΣK

0 Σa

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  . (3-66) 

The self-energy functions (see Figure 3-13) introduced in Eq. (3-66) can be either one-point or two-
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point functions [119]. One-point functions are those self-energy functions which only depend upon a single 
time variable. Those which depend upon two time variables are two-point functions. One-point functions 
seem mostly to arise from the perturbations due to external fields. The two-point self-energy functions arise 
from the particle interactions which cause the particle to scatter. One example is particle-phonon 
interactions. Particle-particle interactions are usually taken to be instantaneous: the important terms of 
Hartree and exchange are often approximated as one-point functions. However, further contributions such 
as correlation or screened exchange are two-point functions. Impurities introduce a potential which is a 
one-point function, but the multiple scattering from this impurity makes the self-energy a two-point 
function. The self-energy functions can also be local (one-point potentials) and nonlocal (two-point 
functions) in space. In the quasi-particle picture, the full Green’s function represents the dressed particle. 

The corresponding Dyson's equations for the Keldysh matrix Green’s function, given in Eq. (3-61), are 
 GK  = GK0 + GK0ΣKGK  (3-67) 
 GK  = GK0 + GKΣK GK0   (3-68) 
where the matrix GK 0 explicitly depends on the initial distribution. The product notation on the RHS of 
Eqs. (3-67) and (3-68) represents integration over the internal variables. From the matrix equations given in 
Eq. (3-67), one can find the equations obeyed by the various Green's functions. The equations of motion for 
the less-than and greater-than Green's functions are 
     G

> ,< = 1 + GrΣr( )Go
>,< 1 + ΣaGa( )+ GrΣ

>,<Ga  .  (3-69) 

Because the self-energy functions   Σ> ,<  depend upon   G> ,< , the equations of motion given in Eq. (3-69) 
are integral equations. The equations of motion for time-ordered and anti-time-ordered Green's functions 
are 
     Gt ,t = 1+ GrΣ r( )Got ,ot 1 + ΣaGa( )+ GrΣ t , tGa  . (3-70) 
The retarded and advanced Green's functions satisfy the Dyson equation 
     Gr ,a = Gr,a

o + Gr ,a
o Σr,aGr ,a   . (3-71) 

While six different Green's functions were introduced in this section, only four of these are considered to be 
independent in the general non-equilibrium situation, and only two are independent in the equilibrium 
system. 
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 (a) Dyson’s equation for the retarded Green’s function. Thin line corresponds to

the bare (non-interacting) Green’s function. Thick lines represent the 
interacting (full, or renormalized) Green’s function. 

(b) Self-consistent Born approximation for scattering from impurities. 
(c) Self-consistent Born approximation for electron-phonon interaction.  

 
Figure 3-13. Feynman diagrams representation of the Dyson equation (a), single point (b) and two-point (b) 
self-energy functions. 

 
In general, the equation for   G<  and the Dyson equation are coupled equations: for example, the 

retarded self-energy may depend on the less-than correlation function. This leads to enormous 
complications, and one usually attempts to split the calculation into two steps: first the retarded/advanced 
Green's functions are determined, and then used as an input to the equation for   G< . Since many one-
electron properties of the system (density of states, scattering rates and quasi-particle lifetimes) require the 
knowledge of the spectral density function A = i(Gr − Ga) , the solution of the Dyson equation for Gr  

(see Figure 3-14), apart from serving as an input to the equation for  G< , is of particular interest. For 
example, after integrating the spectral density function over momentum states, one gets the density-of-
states function. Once retarded, advanced and less-then Green's functions are known, all other Green's 
functions are calculated as a linear combination of these three. The less-than Green's function is actually the 
quantity we usually want, because various moments of this function will give us the quantities of interest, 
such as particle occupation of particular state, current density, etc. 
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Figure 3-14. Diagramatic representation of the solution of the Dyson equation for the advanced and the 
retarded Green’s functions. 

 
Starting from the equations of motion for less-than and retarded Green's functions, Mahan and Hansch 

[120] obtained the correct gauge-invariant equation for the quantum distribution function f(k,ω,r,t) for bulk 
semiconductors in linear response regime. Very recently, an alternative approach has been proposed in 
which one transforms to a new basis defined by the eigenfunctions of the external potential. For the 
uniform field case, this means that the kinetic equation and the Dyson equation are Airy-transformed 
[121,122,123]. The basic idea for this approach was to treat collisional broadening and intra-collisional 
field-effect on equal footing. The equivalence between the Kubo formula and Generalized Kadanoff-Baym 
equation (in linear response) was also demonstrated [124]. Real-time Green's functions were also used in 
the formalism developed by Jauho and Wilkins [125] that allows a nonperturbative calculation of the effect 
of the electric field on electron-impurity scattering. The extension of the approach presented in this section, 
to include the effect of the initial correlations, has been carried out by Wagner [126]. We have applied the 
Green’s functions formalism to study transport properties of silicon inversion layer using all relevant 
scattering mechanisms that dominate the transport properties of the structure at different temperatures. We 
are currently investigating ballistic transport in FinFET devices using the CBR technique for solving the 
Green’s function problem introduced in Chapter 4 of this review article. 

 
4. CBR Method for the Solution of the 3D Green’s Function Method as 

Applied to Modeling 2D/3D FinFET Devices 
 

An efficient method based on Green’s function approach, termed as Contact Block Reduction (CBR) 
method127,128 that is presented next has been developed at Walter Schottky Institute and ASU and used by 
the group from ASU to calculate self-consistently transport properties in nanoscale 10 nm gate length 
FinFET device operating in the ballistic regime. The method rigorously separates the open system problem 
into the solution of a suitably defined closed system (energy-independent) eigen-problem and the energy-
dependent solution of a small linear system of equations of size determined by the contact regions that 
couple the closed system to the leads. The calculation of the charge density of the open system throughout 
the device can be performed with an effort comparable to a single calculation of a small percentage of the 
eigenstates of a closed system. 
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The CBR method allows one to calculate 2D or 3D ballistic transport properties of a device that may 
have any shape, potential profile, and most importantly any number of external leads. In this method, 
quantities like the transmission function and the charge density of an open system can be obtained from the 
eigenstates of the corresponding closed system defined as 0H aa e a= , and the solution of a very 
small linear algebraic system for every energy step E . The retarded Green’s function ( )R EG  can be 
calculated via the Dyson equation through a Hermitian Hamiltonian 0H  of a closed system represented 
by129, 

 
( ) ( ) ( ) ( ) ( ) ( )

( )

1

10

, ,R E E E E E E

E E
Ea a

a a
e

-

-

é ù= º - Së û

é ùº - =ë û -å

0 0

0

G A G A I G

G I H
  (4-1) 

The inversion of the matrix A  can be easily performed using the property of the self-energy S  in real 
space representation: it is non-zero only at boundary regions of the device, which are in contact with the 
external leads. We denote these boundary regions (=contacts) with index C , and the rest of the device with 
index D  (see Figure 4-1).  

Device

Number of leads: L

“contacts”

 
 

Figure 4-1. Graphical description of the device and the leads. 
 

As a result, the Green’s function matrix of the open system can be written in the following form: 

 
1 0 1 0

1 0 0 1 0 0

      

    

     =

R R
C CDR
R R
DC D

C C C CD

DC C C DC DC C CD D

- -

- -

é ù
ê ú= =ê ú
ê úë û
é ù
ê ú
ê ú- + - +ê úë û

G G
G

G G

A G A G

A A G G A A G G

  (4-2) 

The left-upper matrix block 1 0R
C C C

-=G A G  fully determines the transmission function whereas the left-
lower block R

DCG  determines the density of states, charge density, etc. The particle density ( )n r  can be 
obtained using, 
 ( )

,

| | ,n a b
a b

a b x= år r r  (4-3) 

where a bx  is the density matrix and is given by, 
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In Eq. (4-4), L  denotes the total number of external leads of the device, index l  denotes individual lead 
number and ( )f El  is the distribution function associated with lead l . The integration in Eq. (4-4) is 

performed over the energy interval, where both the density matrix distribution ( ) ( )El
a bX  and the distribution 

function ( )f El  are non-negligible. Consequently, the density matrix distribution defines the lower 
integration limit, and the distribution function ( )f El  the upper integration limit. The advantage of using 
Eq. (4-2)-(4-4) for determining electron density is in splitting numerical costs between calculation of 
position-independent density matrix and position-dependent, but energy-independent charge density in 
Eq. (4-3). Then the total numerical cost can be estimated as ( )

2 2
n r eigen E eigen gridsN N N N N= + , where EN  is 

number of energy steps , eigenN  is number of eigenstates to be used, and gridsN  is the number of grid points 
in real space. Note the absence of a large terms like .E gridsN N´  

However, a slightly different approach to calculate particle density can be adopted that is also very 
efficient. This approach appears to be more suitable for self-consistent calculation. For a self-consistent 
calculation using a predictor-corrector approach described below, it is important to have an expression for 
the local density of states (LDOS), ( ), Er r . To obtain the expression for the LDOS using CBR algorithm, 
we note that the lower-left block R

DCG  of the matrix in Eq. (4-2) can be also written in the following form, 
 

 0 1R
DC DC C

-=G G B  (4-5) 
 
Next, using the formula ( ) †, | | 2R REr p= Gr r G G r  and performing simple algebraic manipulations 

one gets 
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 (4-6) 

 
The term R

mG r  in Eq. (4-6) is the retarded Green’s function in a mixed space and mode representation, and 
the second line in this equation is the CBR expression for it. One can check now that the total numerical 
cost of LDOS using Eq. (4-6) can be estimated as 
 ,E grids eigen modesN N N N Nr =  (4-7) 
where modesN  is the number of non-zero elements in CG , which is diagonal in the mode representation 
(thus modesN  is the number of propagating modes). It is usually much more efficient to express the 
quantities with index C (contacts) in mode representation, due to the possible mode reduction. The 
advantage of using Eq. (4-6) is the absence of quadratic and higher order terms with gridsN  or eigenN .  

 
4.1 Bound States Treatment 

 
It is important to note that the density matrix a bx  in Eq. (4-4) and the derived quantities may also 

account for bound states, if they are present in the system. Indeed, as it has been shown in Ref. [??], the 
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term ( ) ( )El
a bX  does not disappear when the coupling to the leads (represented by CS  and CG  terms) is zero 

(i.e. when system states are not coupled to the outside world), but instead results in  
 ( ) ( ) ( )  0E iE E Ea b a b ah d dS = ® +X ¾ ¾ ¾ ¾ ¾ ¾® -  (4-8) 
 
that assures the inclusion of bound states into the total charge density. We point out, however, that in the 
case of numerical evaluation of Eq.(4-8), the delta-functions corresponding to the bound states should be 
integrated analytically, leading to the expression 

 ( ) ( )( ) ( )
1

,
L

T OT A L

BS

f E f E dE
a b

l
ab a g g a b l

g l

x d d e
Î =

= + Xå å ò  (4-9) 

where the sum with index g  is performed over all bound states (BS) in the system. While in the idealized 
ballistic case, it is generally unclear how these states are occupied if the bias is applied, however, in a 
presence of small scattering in the system these quasi-bound states (QBS) can be viewed as states that get 
occupied as a result of scattering of carriers coming from one of the leads 1..Ll = . In the later case, if one 
knew ‘from what lead has a carrier come from’, one could assign to the carrier the corresponding 
distribution function. Exploring this idea, one can make an assumption that the distribution function ( )f ge  

of the quasi-bound state g  depends on the “coupling strength” to the outside leads. If a quasi bound state 
g  is coupled more strongly to lead l , then it is reasonable to expect that its distribution function is close 

to the one of lead l . Generally, one can speculate that if the scattering is small, then the quasi-bound states 
can be occupied according to the following approximate formula 

 ( )
1 1

L L
BS

BS

F f F
a b a b a g gl l g gl

g l l

x d d e
Î = =

= å å å  (4-10) 

where the coupling strength, Fgl , of state g  to lead l  is given by 

 ( ) 2

1

| .
M

m
m

F
l

l
gl g c

=

= å  (4-11) 

The summation in Eq. (4-11) is performed as the squares of the absolute values of projections of states g  

over M l  transverse modes ( )
m
lc  in lead l . Fgl  can be used to determine what states g  should be treated 

as “quasi-bound” ones. We find this approach to be essential, in particular, for a superior convergence of 
the self-consistent cycle. An example of using the coupling strength for determining the quasi-bound states 
is given in Figure 4-2. The solid circles represent the coupling strength Fgl  of an eigenstate g  to the lead 
l  (for simplicity data for only one (source) lead are shown on Figure 4-2). We see that the vast majority of 
eigenstates are strongly coupled to the lead, except the lower 6 circles, for which Fgl <0.2. It is possible, 
therefore, to introduce a threshold in coupling strength (for example 0.19thF = ), so that eigenstates with 
coupling strength less than the threshold would be identified as QBS. Furthermore, every peak in the DOS 
corresponds to a certain QBS (there are 6 peaks and 6 QBS shown in Figure 4-2). While the former 
property is not always the case (some QBS do not result in resonant peaks in the DOS), it is generally 
possible to find a QBS “responsible” for every resonant peak in the DOS. Therefore, most of the hard-to-
integrate resonant peaks in the DOS can be eliminated, by excluding the responsible weakly-coupled 
eigenstates from the eigenstate set { }a , which we use to calculate the retarded Green’s function 0G  of a 
closed device. These excluded states then are taken into account with the following resulting expression for 
the charge density: 

 ( )
2

,

| | |BS

BS BS

n a a a b
a a b

a x a b x
Î Ï

= +å år r r r  (4-12) 

If the explicit relation between the charge density and the LDOS is desired, the following formula can be 
use instead: 
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where the LDOS due to lead l  is ( ), Elr r . 
 

 
 
 
Figure 4-2 Quasi-bound state (QBS) detection using the coupling strength in Eq. (52). The graph shows 
DOS energy dependence (solid curve, left-hand scale) and the coupling strength for the device eigenstates 
(solid circles, right-hand scale). Note the resonant peak of open-system DOS at each QBS.  

 
4.2 Energy Discretization 

 
For an efficient numerical implementation of a self-consistent scheme, the choice of the energy grid is 

of high importance. To integrate the continuous part of the carrier density, the LDOS is discretized in 
energy space and then a simple numerical integration is done by summing up the values for each energy 
step weighted by the Fermi distribution and the energy grid spacing kED  with k  being the index of the 
energy grid. Using a regular grid with constant grid spacing, the integral over the peak deriving from the 
resonant states is very poor since the relative distance between the nearest energy grid point kE  and the 
resonant energy mE  is, generally, arbitrary. In addition, the resonant energy is slightly shifted with each 
iteration step, leading to a varying integration error during the self-consistent cycle, which acts as an 
obstacle against convergence for any self-consistent algorithm. Thus, a solution to this problem is to use the 
physical information about the system and employ an adaptive energy grid that resolves each known peak 
with a local energy grid of a few tens of grid points that is fixed to the resonant energy mE . The location of 
resonant states is easy to find, since the resonant energies are close to (selected) eigenstates of the closed 
system. Another advantage of the CBR method is that these eigenstates are already known, since in this 
method the solution for the open system is being expressed in the basis of the closed system. As a result, 
the integration error is reduced compared to the case of using regular grid and remains constant within the 
iteration, since the grid is locally fixed to the shifted mode energies.  

 
4.3 Self-Consistent Solution 

 
The self-consistent solution of the ballistic or quasi-ballistic transport properties of an open device 

requires repeated solution of the Schrödinger and Poisson equations. In principle, it is possible to simply 
iterate the solution of the Schrödinger and Poisson equations and with enough damping this will yield a 
converged result. However, this approach leads to hundreds of iteration steps for each bias point that do not 
pose a reasonable scheme. To improve the convergence of a highly non-linear set of coupled equations, 
such as the Schrödinger-Poisson problem, the Newton algorithm is usually the first choice. However, the 
exact Jacobian for the Schrödinger-Poisson set cannot be derived analytically, and its numerical evaluation 
is rather costly (while certainly possible, see e.g. Ref. [??]). In the case of a closed system this problem has 
been solved using the predictor-corrector approach130,131. The aim of this method is to find a good 
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approximation for the quantum density as a function of the electrostatic potential where an expression for 
the Jacobian is known. In this work we adopted this approach to open systems. At first, the Schrödinger 
equation is solved for the closed system with the Hartree potential, ( )Hj r ,  and the exchange and 
correlation potential , ( )X Cj r  taken into account. Then the local density of states ( ), Er r  of the open 
system is calculated using the CBR method. The Hartree potential Hj  and carrier density n  are then used 
to calculate the residuum, F , of the Poisson equation using, 
 [ ] ( )H H DF n Nj j= - -A  (4-14) 
where A  is the matrix derived from the discretization of the Poisson equation. If the residuum is smaller 
than a predetermined threshold the solution is taken to be a converged one. If the residuum is still too large, 
the correction to the Hartree potential ( )HjD r  is calculated in the predictor step, where the predictor 
carrier density ( )prn r  is calculated, assuming it to be the functional of the change ( )HfD r  in the Hartree 
potential as follows : 
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where ( ) ( )[ ] 11 expf x x -= +  for 3D systems or the corresponding Fermi integral for systems with lower 

dimensions, the energy ( )
FE l  is the Fermi energy level in lead l , and a factor of 2 is taken into account for 

the spin degeneracy of the electrons. Note that the Jacobian for the system Eq. (4-14) can be easily found 
analytically: 
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After applying the Newton method, the obtained correction to the Hartree potential HjD  and the 
corresponding carrier density are used to update the Hartree Hj , exchange LDA

Xm  and correlation LDA
Cm  

potentials for the next iteration ( 1i + ) as follows: 
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The loop is repeated until convergence is achieved, that is ( )i
Hj eD < , with e  being the absolute error of 

the potential. We find that typically only very few (5-7) solutions of the Schrödinger equation are necessary 
to yield a solution with 3 converged digits in the potential and currents.  
 

4.4 Device Hamiltonian, Algorithm and Some Numerical Details 
 
In this work FinFET devices with varying fin width (4 nm ~ 12 nm) have been simulated. With 12 nm 

fin width the simulation real space domain is fairly large.  While the CBR method for quantum transport 
simulation can be used with any multi-band Hamiltonians, including the tight-binding and k p× , in this 
work, we choose to adopt the effective mass model and finite difference discretization scheme to be able to 
simulate relatively ‘large’ FinFET device within a reasonable time frame. The structure and the size of the 
corresponding effective mass Hamiltonian are determined by the dimensionality of the transport problem 
and the number of real space grid points. Due to the presence of non-equivalent valleys in Si, we need to 
solve the open-system problem for each valley, and then add up the contributions from different valleys 
(weighting them with the corresponding valley degeneracy). 

 In ultra-scaled nano-transistors source, drain and gate regions are usually heavily doped, therefore it is 
important to include quantum-mechanical effects of exchange and correlation. In this work this is done via 
the local density approximation (LDA). The phenomenological scattering on the phonons using the 
relaxation time approximation has been taken into account. Since this phonon scattering model relies on 
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phenomenological parameters, in this work we present results that include into account this 
phenomenological scattering on phonons as well as purely ballistic ones (that do not depend on such 
parameters). 

After the initial guess for the potential and the initial number of device eigenstates, the CBR loop is 
started. For each CBR-Poisson iteration the following tasks are performed: i) transverse lead modes are 
calculated; ii) eigen-problem is solved for closed- system with von Neumann boundary conditions at the 
contacts; iii) open-system solution is constructed.  The simulator has been modified to incorporate the 
automatic determination of the required number of device eigenstates and lead modes for each iteration to 
yield desired accuracy. Due to this dynamic nature of eigenstate and lead modes determination, CPU time 
can be saved and also memory requirements have been optimized. 

  
PARAMETER\OPERATION 

REGIME 
SUBTHRES

HOLD 
ON-STATE 

Number of grid points/mesh size 17169/2.5 Å 17169/2.5 Å 
Number of device eigenstates used 

in calculation  (averaged over 
valleys) 

470 (2.7%) 270 (1.5%) 

Number of total lead transverse 
modes used in calculation 
(averaged over valleys) 

39 (20 %) 31 (16 %) 

Average absolute error of 
potential (eV)/ Average number of 

converged digits of the current 

10-5 / 3 10-5 / 3 

Average number of CBR-Poisson 
iterations 

5 6 

 
Table 4-1 Convergence data and average number of generalized von Neumann eigenstates used for 
construction of open system solution. 

 
The accuracy e  also determines the upper error norm for the functional F ; if F e<  then the solution is 
considered to be converged and the next bias point can be processed, otherwise the predictor-corrector 
approach is invoked to determine correction jD  to the potential. With updated potential j  CBR routine is 
called again and the loop continues until convergence is achieved. Note that the CBR module is called for 
each non-equivalent Si valley to obtain the LDOS and transmission function for each valley; then the total 
charge density, currents, etc. are calculated as the corresponding sums. Table 4-1 shows the average values 
of required number of device eigenstates and lead modes in off- and on- state of a FinFET device being 
simulated.  

One can see that the CBR method allows us to use a small fraction of device eigenstates and lead 
modes to get a well-converged solution within 5-6 iterations, on average. It is significant that this excellent 
rate of convergence has been observed on a wide variety of devices with different doping profiles and 
geometries. However, in order to achieve this result, a combination of all the steps has to be performed. For 
example, in the absence of QBS detection, the average number of iterations would be about 20-30, and in 
some cases there could be no converged solution at all. Similarly, it would be significantly harder to 
achieve any convergence in the absence of adaptive energy discretization, etc. However, we find that the 
full scheme presented in this section, resolves convergence problems in most cases. As a real-life example, 
the convergence of the non-linear Poisson equation for a FinFET with different gate voltages changing 
from +0.2 to -1.0 V and fixed drain-to-source voltage (0.1 V) is shown in Figure 4-3. The corresponding 
error in the source-drain current is also plotted in the same figure. The maximum error in the source-drain 
current values is 2% for the potential accuracy fixed at -52 ×10  eV. No convergence-tuning parameters of 
any kind have been used in the simulation: the energy grid, energy cut-off, number of eigenstates, lead 
modes, etc., are automatically determined by the CBR simulator in every iteration and for each bias point. 
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Figure 4-3 Residuum of non-linear Poisson equation and corresponding relative error in drain current (w.r.t. 
converged solution of a higher order) for different gate voltages. The gate voltage values are shown above of each 
segment of the curve. 
 

4.5 Simulation Example – 2D Results 
 

Over the decade many novel structures have been proposed for the nanoscale regime of operation, 
among them fully depleted MOSFETs, in particular Double-Gate (DG) MOSFETs emerged as the leading 
candidate for the ultimate scaling of silicon MOSFETs down to 10 nm (see Table (??). In these devices 
effective control of the gate over the channel has been enhanced by using multiple gates and thinning of 
body thickness 132. For a given insulator thickness theoretical study shows that DG devices can be scaled to 
the lowest channel length keeping the short channel effects within acceptable limits133 Theoretically, 
cylindrical or surround-gate MOSFET is found to show the best gate control of channel but realization of 
this structure from fabrication point of view is quite challenging 134, 135. Different orientation of double-gate 
MOSFETs have been proposed 136 as shown in Figure 4-4. In type I device137 the current direction is in 
plane but gate-to-gate direction is normal to the wafer plane. The fabrication process with this type of 
devices is complex and contacting the bottom gate is rather difficult. Type II devices134 have gate-to-gate 
direction in plane but the current direction is perpendicular to the plane. This type of devices suffers from 
inability to easily control the channel and source/drain doping profiles138. Type III devices139 have the 
advantage of both in-plane gate-to-gate direction and in-plane current direction but the width of the device 
is normal to the plane. 
 

 
Figure 4-4 Three possible orientations of DG MOSFETs in silicon wafer (adapted from Wong et. al. [136]). 
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The major disadvantages of these double gate MOSFETs are: (i) non-planer structure as opposed to the 
planar structure of conventional bulk MOSFETs, (ii) self-alignment of the gates with each other and with 
source/drain and, (iii) formation of ultra thin silicon film. FinFET140, 141, 142 is a special category of type III 
devices in which the height is reduced to maintain quasi-planar topography for the ease of fabrication143. In 
FinFETs gates are automatically self-aligned with each other140 and also the packing density is large 
compared to other double-gate structures136.  
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Figure 4-5. (a) - 3D schematic view of a prototype FinFET, (b) - top view along A-A′ cross section and, (c) - side 
view along B-B′ cross-section. 
 

The geometry of a typical FinFET device is shown in Figure 4-5. The fin thickness, Sit , is considered 
to be the most important process parameter as it controls the carrier mobility as well as threshold voltage. 
The fin is made thin enough when viewed from above, as shown in Figure 26 (b), so that both gates 
simultaneously control the entire fully depleted channel film. Usually the top surface of the fin is covered 
by a thicker oxide compared to the thickness of the side gates (front and back), oxt ; therefore channels form 
only along the vertical surfaces of the fin. The fin height, h  here is equivalent to the “gate width” of the 
conventional bulk MOSFET. Therefore, the effective channel width in FinFET devices is equal to 2h  
when only side gates are considered. For higher drive current different channel width is achieved by 
introducing multiple fins in parallel. In that case, the resultant width of the channel can be represented as 
2 finsh N´ ´  with finsN  being the number of fins.  

In this work we have modified our 2D CBR simulator in such a way that semiconductor devices on 
wafers of arbitrary crystallographic orientation can be simulated. This was necessary to match the 
experimental data 144 for a FinFET device of which the channel is on (110) wafer plane. The conventional 
approach assumes wafer in (001) plane, and with the real space axes , ,X Y Z  being along crystallographic 
directions [100] and [010] and [001] respectively, the effective mass tensor is diagonal and the Schrödinger 
equation can be discretized and solved accordingly. However, for FinFET devices with channel oriented in 
(110) wafer plane, the effective mass tensor is non-diagonal (see e.g. [??]). The resulting Schrödinger 
equation has mixed second derivative and first derivatives terms of which the coefficients are the non-
diagonal element of effective mass tensor. Considering 2D simulation, it is possible to eliminate the mixed 
second derivative term by rotating the device in real space by a suitable angle. The first derivative term can 
be eliminated with the wave-function change of variable after the elimination of second derivative terms. 
As a result, to simulate FinFET devices with channel orientation in (110) wafer plane it is sufficient to use 
modified effective masses along device coordinates. Note that the above procedures are rigorously valid for 
2D (and 1D) transport simulations; a full 3D simulation with the wave-function depending on the device 
depth (e.g. fin height) would require a somewhat different treatment of the coefficients in the discretized 
Schrödinger equation containing effective masses. Regarding 2D simulation, however, we assume that the 
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wave-functions depend on device length and width directions, but neglect the explicit height dependence, 
thus assuming that the transport in this 3D FinFET device is two-dimensional (2D).  

With the inclusion of the modifications specified above, sets of 2D simulation have been performed in 
order to match experimental data with fin thickness of 12 nm and physical gate oxide thickness of 1.7 nm. 
In the experiment the gate electrode consisted of dual doped /n p+ +  polysilicon. Also the gate insulator is 
nitrided oxide for which the dielectric constant might not be exactly the same as that of  SiO2

145. However, 
in our simulations we use the same device geometry (fin width, gate length and gate oxide thickness) but 
assume n + polysilicon gate and SiO2 as the gate insulator. The effects of top gate on transport are assumed 
to be negligible considering much thicker gate oxide compared to side gate oxide.  As mentioned earlier, 
the experimental FinFET device has been fabricated with the channel oriented in (110) wafer plane. In our 
simulations we also adopt the same wafer plane and assume that carrier propagation is along 110][  
crystallographic direction. 

In order to obtain the closest match to the experimental results, a series of simulations with different 
combinations of doping profiles (source/drain doping concentration) and gate-source/drain underlap 
regions (which defines the doping gradient) have been performed. The doping profile which gives the 
closest fit of simulation results to the transfer characteristics of experimental FinFET at low drain bias can 
be described as - source/drain doping of  7×1018 cm-3 which follow a Gaussian envelope over a gate-
source/drain underlap length of 12 nm to reach the body doping of 1015 cm-3. The resulting doping gradient 
is around 3 nm/dec. We use uniform doping of 7×1018 cm-3  in the gate electrodes. Since the exact doping 
profile in the gate electrode is not specified, the simulated transfer characteristics can be shifted in voltage-
scale (gate voltage) to match experimental data. However, it is important to mention that in selecting the 
above mentioned doping profiles as the appropriate one to match experimental data we consider 
simultaneously that: (i) the value of subthreshold slope being in good correspondence to that obtained in 
experiment, (ii) over the gate voltage range of interest (-0.8V to 0V) the current values are reasonably close 
to the experimental data and, (iii) at very low gate voltage transfer characteristics do not show any bending 
which we do not observe in experimental data. 

As one can see from Figure 4-6, the transfer characteristics obtained using the above mentioned doping 
profile gives current values close to the experimental ones in the subthreshold regime at a drain voltage of 
0.1 V. In order to check that this result is not a coincidence, the transfer characteristics with the same 
geometry but with a high drain voltage of 1.2 V have been calculated, and found to be in good 
correspondence with the experimental data (see Figure 4-10).   
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Figure 4-6 Comparison of simulated transfer characteristics to the experimental data at low drain bias of 0.1V. 

 
One can see from Figure 4-6 that above threshold, with the increase in gate voltage, the deviation between 
simulated and experimental data increases rapidly. We predict that presence of very high parasitic series 
source/drain resistance, a critical issue in FinFET device, might be a reason for the smaller value of the 
drain current at high gate bias in the experiment. In order to examine the influence of the series parasitic 
source/drain resistance, SDR  we extract the value of SDR  of experimental device from a plot of total 
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resistance, totR  (sum of device resistance, intR and series parasitic source/drain resistance, SDR ) vs. gate 
voltage as shown in Figure 4-7. 

-0.8 -0.4 0.0 0.4 0.8 1.2
102

103

104

105

106

107

108

To
ta

l r
es

is
ta

nc
e 

[o
hm

-µ
m

]

Gate voltage [V]

VDS= 0.1V

RSD

 
Figure 4-7 Total resistance, totR  as a function of gate voltage at low drain bias. 

 
For sufficiently large value of gate voltage, intR  becomes very small and one can reasonably assume that 

.tot SDR R» The value of total parasitic series source/drain resistance extracted for the experimental device 
is found to be around 400 Ω - μm . Including the effects of SDR  the modified transfer characteristics is also 
shown in Figure 4-6 and one can see that the simulation result is very close to the experimental findings 
even at high gate bias. After including the effects of series resistance still we see some deviation of 
simulation results from the experiment in on-state. It is well known that in nanoscale devices, the presence 
of an unintentional dopant in the channel is highly probable146. Even if the fin is lightly doped, the 
unavoidable background doping might give rise to a one ionized dopant being present at a random location 
within the channel. Also, if an electron becomes trapped in a defect state at the interface or in the silicon 
body, it will introduce a fixed charge in the channel region. Depending on its position and applied bias, this 
unintentional dopant can significantly alter the device behavior, particularly when the channel is very 
lightly doped. An unintentional dopant sitting at a random location within the channel introduces a 
localized barrier which impedes the carrier propagation. The impact is significantly larger for an 
unintentional dopant sitting at the beginning of the fin near the source end compared to other probable 
positions 147.  
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Figure 4-8 1D potential profiles along the length of the device in subthreshold and on-state with low and high drain 
biases. 
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Figure 4-8 depicts the effective 1D potential profiles along X direction at the center of the fin in 
subthreshold regime and on-state at low and high drain bias. Also shown in Figure 4-9 is the corresponding 
1D lateral electric field profiles along X direction. At low drain bias 0.1V( )DSV = and low gate voltage 

-0.5V( )GSV =  the intrinsic barrier is already high enough (as shown in Figure 4-8) so that the effects of 
the localized barrier introduced by the unintentional dopant can be assumed negligible. Therefore, over the 
subthreshold regime, we see a very good correspondence between simulation and experiment.  For higher 
gate voltages -0.2V( ),GSV =  the intrinsic barrier is reduced significantly (Figure 4-8). 
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Figure 4-9 1D electric field along the length of the device for the potential profiles in Figure 4-8. 
 
Also the lateral electric field is reduced due to the increased effects of transverse electric field (Figure 4-9). 
Thus, the localized barrier due to unintentional dopant is expected to influence the value of the drain 
current around device turn-on point. Therefore, at low drain bias ( 0.1V)DSV = , the deviation between 
simulated drain current and experimental value increases with increasing gate voltage (above threshold) up 
to some cut-off beyond which the inversion electrons start to screen the potential of a single dopant ion. 
Consequently the influence of unintentional dopant on drain current gradually diminishes at much higher 
value of the gate voltage beyond threshold voltage which is also evident from Figure 4-6. 
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Figure 4-10 Comparison of simulated transfer characteristics to the experimental data at 1.2V.DSV =  
For higher value of drain voltage 1.2V( )DSV = , we see some discrepancies between the simulation 

results and experimental data in both subthreshold and at high gate volt-ages as shown in Figure 4-10. 
Inclusion of series parasitic source/drain resistance reduces the drain current, but still the experimental 
values of drain current remains much smaller than the simulation results. In this case, due to significant 
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DIBL effects, intrinsic barrier reduces, compared to the case with low drain bias, for both low and high gate 
voltages as shown in Figure 4-8. In subthreshold regime, the intrinsic barrier is much lower for 

1.2VDSV = than for .1V.0DSV =   Consequently, the discrepancy between the experiment and simulation 
can be explained by more ‘noticeable’ (with respect to intrinsic barrier) effect of localized barrier due to 
unintentional dopant, which was much less significant for low drain bias. As the gate voltage increases, the 
effects of unintentional dopant become even more pronounced, which may explain the high voltage trend in 
Figure 4-10. We note that the position of the unintentional dopant is crucial in determining its effects on 
drain current. At high drain bias, unintentional dopant at the source side, will affect the drain current 
stronger than impurities at other locations. 

Finally, we note that the subthreshold slope of 125 mV/dec have been reported for the n-FinFET in the 
experiment144. The corresponding value as obtained from our simulation is 120 mV/dec. The value of 
DIBL -6at 3 ×10 A/μm(  )DI =  as extracted from the transfer characteristics of the experimental device is 
145 mV/V and the corresponding value calculated from our simulation considering the effects of series 
parasitic source/drain resistance is 160 mV/V. These numbers clearly show that the experimentally 
fabricated144 10 nm FinFET device was very far from optimal. Consequently, the 10 nm device 
characteristics could be significantly improved by a proper tuning of device geometry. In the work148 we 
have used our CBR simulator to optimize the device geometry and doping profile of a 10 nm FinFET 
device to meet most of the performance matrices defined by ITRS [5] for high performance 10 nm double-
gate devices, which are expected to be commercially available around 2015. 
 

4.6 Simulation Example – 3D Results 
 

In the previous section simulation results obtained for DG FinFETs using 2D CBR simulator have 
been presented. In using 2D simulator the implicit assumptions taken into account are, (i) height (‘Y’ 
coordinate) of the FinFET is much larger compared to the width (‘Z’ coordinate) (Fig. 4-5(a)) so that it is 
reasonable to assume that carriers are not confined along Y direction and solution of Schrödinger equation 
can be represented by simple plane waves and, (ii) the device can be viewed as a combination of parallel 
identical slices along the Y direction. However, the latter assumption becomes invalid once the top gate in a 
FinFET and the buried oxide at the bottom of the device are taken into account. In addition, the first 
assumption is not always necessarily true for ultra-scaled devices as the Y directed length can be 
comparable to Z directed length.  For example, considering 10 nm FinFET and ‘area efficiency’ as the 
factor for the determination of fin height, the minimum height could be as low as 10 nm. In this case even 
the dimension of ultra thin fin (» 4 nm) is comparable to the fin height ( 10 nm» ) and the first 
assumption may lead to not very accurate picture of carrier transport. Moreover, effects like discrete 
doping, unintentional dopant in the channel and surface roughness all are inherently three dimensional in 
real space and 2-D simulator should not be used to estimate the impacts of these effects in device 
characteristics. 

One of the major goals of this research was to extend the 2-D CBR simulator to a fully self-consistent 
3-D version so that device characteristics of ultra-small devices can be predicted with higher accuracy. 
However, the computational cost in 3D simulator goes up significantly from that of 2D simulator as it 
solves 3D open-system Schrödinger and 3D Poisson equations. Moreover, in 3D domain contact cross-
sections are two dimensional instead of one dimensional for the 2D case. One would then, within the CBR 
formalism, need to solve 2D Schrödinger equation for the lead modes of all contacts and 3D Schrödinger 
equation for device eigenstates for each equivalent valley.  

Regarding 3D simulation of DG and TG FinFETs, an ultra-scaled geometry has been considered to 
keep computational time within reasonable limits. The entire device domain is 30 nm×12 nm × YL where 
YL varies from 4 nm to 8 nm. Fin widths of 4 nm and gate oxide thickness of 1.2 nm have been assumed. 
Buried oxide is not simulated in this work. Source/drain doping of 2×1019 cm-3 is used with a doping 
gradient of 1.25 nm/decade over the source/drain-body junctions. Uniform doping of 2×1019 cm-3 has been 
assumed for the gate electrodes. For DG FinFETs fin height of 4 nm and 8 nm have been considered while 
for TG simulation only fin height of 4 nm is used. In addition, a simplified TG structure (as shown in 
Fig. 7.1) has been used to save computational time.  
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Figure 4-11 Left panel – side view of the FinFET geometry along line B-B' in Fig. 4.5(a), Right panel – 
side view of simplified structure used for 3-D simulations in this work 
 
4.6.1  DG FinFET: 2D vs. 3D Simulation 
At first the computational efficiency of both 2D and 3D simulator has been compared.  The 2D 
computational domain is 30 nm × 12 nm while the 3D computational domain is 30 nm ×12 nm×4 nm. 
Fig. 4-12 shows the convergence in terms of Poisson residuum as the gate voltage varies from -0.3V to 
0.4V at a fixed drain bias of 0.4V. Each segment of the curves corresponds to a particular gate voltage and 
number of dots/square denotes the number of iteration needed to achieve convergence for that bias 
condition. 
 

0 15 30 45 60 75
10-5

10-4

10-3

10-2

10-1

100

0.40.30.20.1  0-0.1-0.2

P
oi

ss
on

 r
es

id
um

m

Iteration

 3D simulation
 2D simulation

-0.3

VDS= 0.4V

 
Figure 4-12 Residuum of non-linear Poisson equation for 2-D and 3-D case. The number of dots/square 
along each segment of the curves corresponds the number of iteration for that bias point. The value of 
applied voltage is shown close to each segment. 
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It is evident from the results presented in Fig. 4-12 that both 2D and 3D simulations converges well for 
each of the bias points with an average Poisson residuum smaller than 10-4 eV. Table 4-2 shows different 
parameter related to computational efficiency of -D and 3D simulator for each iteration and valley. 

 
Table 4-2 COMPUTATIONAL EFFICIENCY OF 2D AND 3D SIMULATOR FOR EACH BIAS 
POINT AND AVERAGED OVER VALLEYS 

 
Parameter 2D simulation 3D simulation 
Grid points 2356 25916 

Number of device eigenstates 90 (3.8%) 260 (1%) 
Avg. number of iterations per bias 5 9 
Eigen-solver time (per iteration) 15s 800s 

Open-system solver time(per iteration) 36s 2200s 
 
The impact of fin height on the device characteristics of DG FinFETs has been investigated using the 3-D 
simulator and the results have been compared with the corresponding 2-D simulations. For 3-D 
simulations, fin heights of 4 nm and 8 nm have been examined while the 2-D simulation is performed 
considering a slice in XZ plane. 
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Figure 4-13 Transfer characteristics of the considered FinFET with fin heights of 4 nm and 8 nm along with 
the 2-D simulation result at a drain bias of 50 mV. 

 
The corresponding transfer characteristics of the FinFET are shown in Figure 4-13 at a drain bias of 50mV. 
It is important to mention that simulations results presented here are purely ballistic (i.e. no scattering has 
been included). Note that the values of the drain current are normalized by the height of the fin, h (per fin 
height value). For a fin height of 4 nm the drain current is significantly higher than the 2D case at high gate 
voltages. As the fin height increases from 4 nm to 8 nm the drain current decreases and approaches the 
values obtained with the 2D simulation.  This behavior can be explained as an effect of increasingly 
stronger quantum confinement as fin height is reduced. The electron density obtained from 2D simulation 
along with average electron density (taken over the fin height of 4 nm), and electron density at the middle 
of the fin height for a fin height of 4 nm and 8 nm are shown in Figure 4-14. Two-dimensional simulation 
assumes no confinement effects along the height direction. As the fin height is reduced, confinement along 
height direction gradually becomes stronger and the density of electrons around the center (along the height 
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direction) of the fin increases. As can be seen from the results presented in Figure 4-14, for a fin height of 
4nm the average (taken over fin height) electron density is smaller than the 2D density but the electron 
density in a XZ plane at the middle of the fin height is significantly larger than the 2D case due to the 
strong quantum confinement. Therefore, in this case the current is mainly determined by the confined 
electron around the center region of the fin even though the average density is smaller than the 2D case. As 
the fin height is increased from 4 nm to 8 nm, the confinement along the height direction becomes 
relatively weaker and consequently the electron density at the middle of the fin height also reduces. 
Therefore, the drain current also reduces and approaches the 2-D value. 
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Figure 4-14  2D electron density, (a) 2D simulation, (b) averaged over h with h  = 4nm, (c) at y = h/2  with 
h = 4 nm and, (d) at y = h/2  with h = 8nm The applied biases are 0.2VGSV =  and 0.05VDSV =  
 

The net gate leakage normalized by the fin height is shown in Figure 4-15 for both 2D and 3D 
simulations. Interestingly, these results clearly show that a 2D gate leakage simulation can also serve as a 
very good approximation for double-gate devices: in this case the location of resonant peaks in gate 
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currents is not affected by 3D effects, only the magnitude of the peaks is affected due to the change of 
electron density in the channel, induced by the confinement in height direction. Predictably, this property is 
no longer true for tri-gate devices, as it is demonstrated in the following sub-section. 
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Figure 4-15 Net gate leakage as a function of gate voltage for the considered FinFET with fin height of 4 
nm and 8 nm along with the corresponding 2-D simulation result. 
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Figure 4-16 Output characteristics of the considered FinFET obtained from 3-D simulation with h = 4 nm 
along with the corresponding 2-D simulation at GSV = 0.1V. 
 
Finally, we compare the 2D and 3D output characteristics of DG FinFET. The results obtained from 3D 
simulations for gate voltage of 0.1V are shown in Figure 4-16 along with the corresponding 2D simulation.  
One can see that the output characteristics exhibit behavior similar to the transfer characteristics as fin 
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height is reduced. The percentage increment in drain current (calculated as 3 2 2( ) / 100D D DI I I- ´ ) is 
nearly constant for different drain voltages and is equal to 15%. 
 
4.6.2 Double-Gate(DG) vs.Tri-Gate(TG) FinFET 
In order to investigate the influence of the top gate on carrier transport, FinFET with active top gate has 
also been simulated. In this case the top gate oxide thickness is set to the same value as the side gate oxide 
thickness, 1.2 nm. Figure 4-17 shows the transfer characteristics of the DG and TG FinFETs at a drain bias 
of 0.4V.  
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Figure 4-17 Transfer characteristics of double-gate and tri-gate FinFETs at a drain bias of 0.4V (linear and 
semi-log scale). 
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Figure 4-18 Net gate leakage vs. gate voltage for DG and TG FinFETs at DSV = 0.4V. 
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From Figure 4-17 one can see significant improvement in device turn-on and turn-off characteristics which 
is mainly due to the additional control of the top gate over the channel. Figure 4-18 shows the net gate 
leakage as a function of gate voltage for a fixed drain bias of 0.4V. Adding the top gate significantly 
increases the off-state gate leakage as can be seen from Figure 4-18. 
 

The 3-D electron densities for DG and TG FinFETs for an applied gate voltage of 0.2V and drain 
bias of 0.4V are shown in Figure 4-19. 

 

  
 

Figure 4-19 3-D electron density for DG and TG FinFETs for GSV = 0.2V and DSV = 0.4V. 
 
One can see from these simulation results that electrons are equally and strongly confined around the center 
of the fin from Y and Z directions since Sit h= = 4 nm. Also shown in Figure 4-20 are the electron 
densities in YZ plane at X = 15 nm for DG and TG FinFETs.  Inclusion of the top gate increases the 
channel electron density significantly and consequently, yield higher drain current. 
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Figure 4-20 Electron densities in YZ plane at X = 15 nm at GSV = 0.2V and DSV = 0.4V for DG (top 
panel) and TG (bottom panel) FinFETs. 
 
The output characteristics of DG and TG FinFETs for an applied gate voltage of 0.1V are shown in Figure 
4-21. One can see the ‘flattening’ of the output characteristics for TG FinFET at smaller drain voltage 
compared to DG FinFET. Therefore, TG FinFET would provide less pronounced effects of channel length 
modulation by drain voltage. 
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Figure 4-21 Output characteristics of double-gate and and tri-gate FinFETs at a gate voltage of 0.1V. 

 
Table 4-3 summarizes different performance matrices obtained from the simulations for DG and TG 
FinFETs. For the considered FinFET, adding a top gate increases the on-current increases by 35% and 
decreases the subthreshold source-to-drain leakage by 85%. However, the total off-current 
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( ,SD LEAK GI I+ ) approximately doubles when top gate is added due to the significant increase in the off-
state gate leakage as shown in Table  4-3. It is important to note that for all the simulations presented here, 
SiO2 as the gate dielectric and thin gate oxide thickness of 1.2 nm are assumed. It is possible to reduce the 
amount of leakage by using high-K dielectric in the gate oxide. Overall, device characteristics can be 
improved by adding a top gate. 
 
Table 4-3 PERFORMANCE MATRICES OBTAINED FROM THE SIMULATIONS OF DG AND TG 
FINFETS 
 

Parameter DG TG 
ION = I

DS @ V
DS = 0.4V, V

GS = 0.3V [μA] 7.57 10.18 

ISD,LEAK = I
DS @ V

DS = 0.4V, V
GS = -0.4V [nA] 0.0319 0.0048 

Subthreshold swing [mV/dec] 73 70 
|I

G
| @ V

DS = 0.4V, V
GS = -0.4V [nA] 0.027 0.122 

 
4.6.3 Effects of an Unintentional Dopant : DG vs. TG FinFET 
Using 3D simulator it is possible to analyze device behavior in the presence of an unintentional dopant 
within the channel region. There have been a number of theoretical investigations on the evaluation of the 
effects due to unintentional dopants in the channel region. Effects of a point defect in nano-wire MOSFETs 
has been reported where the point defect is characterized by a macroscopic Coulomb tail treated in the 
mode-space approach, plus a short range on-site perturbation potential energy, treated exactly. It is found in 
that work that subthreshold current may vary in a factor of 10 according to the position of the impurity. 
Very recently, a full 3-D real-space RGF simulator has been presented for the study of the impacts of stray 
charges on the behavior of ultra-small nano-wire transistor. It was concluded that the influence of a single 
dopant on device behavior is dramatic, independent of its spatial location. This rather unusual result is 
likely due to the very specific device geometry considered in that work: the cross-sectional dimensions of 
the nano-wire channel (2.2 nm×2.2 nm) were small enough to be comparable to characteristic Coulomb 
radius of a single impurity. Surely enough, in this case the impurity simply “blocks” the channel almost 
entirely and the resulting device I-V characteristics are no longer of a ‘normal’ FET. Basically, Martinez et 
al. [??] have demonstrated in their work that for extremely narrow (~2 nm) wires a single impurity leads to 
a complete degradation of any transistor characteristics. However the question remains, whether the effect 
of a single impurity is really so dramatic for nano-transistors with more realistic Si thickness. For a 
comparison, ITRS estimates for 10 nm gate length devices Si body thickness of 6 nm. 
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 In this work the presence of an unintentional dopant (UD) in a FinFET with 4 nm Si thickness, which 
corresponds to the optimization rules developed in this work, has been investigated. The UD is treated in 
real-space and included in the corresponding doping in the Poisson equation. Two extreme positions of an 
unintentional dopant have been investigated - (a) when the dopant is sitting close to the source end of the 
channel (x = 11 nm, y = 2 nm, z = 6 nm) and, (b) when sitting close to the drain end of the channel (x = 19 
nm, y = 2 nm, z = 6 nm). Figure 4-22 shows the schematic of the two positions of the unintentional dopant 
being simulated in this work. 

An unintentional dopant sitting in a random location in the channel give rise to localized potential 
barrier (LB) the impact of which heavily depends on the operating condition of the device. Figure 4-23 
presents the 2-D conduction band profile at y = h/2 with h = 4 nm showing the LB for case (a) at 

GSV = 0.2V, and GSV = 50mV. 
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Figure 4-22 Simplified schematic of the considered FinFET showing the positions of the unintentional 
dopant simulated in this work. 
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Figure 4-23 Two-dimensional potential energy profile at y = h/2 with h = 4 nm showing the localized 
barrier produced by an unintentional dopant sitting near the source end of the channel (x = 11nm, y = 2 nm, 
z = 6 nm) at 0.2VGSV =  and 50mVDSV = . 
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 Transfer characteristics for these two cases are shown in Figure 4-24 at a drain bias of 0.4V. When UD is 
sitting near the source end of the channel its impact is more significant than the case when it is sitting near 
the drain end as can be seen from Figure 4-24.  
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Figure 4-24 Transfer characteristics of the considered DG FinFET in the presence of an unintentional 
dopant. Solid curve- no UD present, dashed curve- when the UD is sitting near the source end of the 
channel (case (a)), dotted curve- when the UD is sitting near the drain end of the channel (case (b)). 
 
The percentage reduction in drain current due to the presence of an unintentional dopant for the above 
mentioned two cases are shown in Figure 4-25. Also shown in the same figure the percentage reduction in 
drain current for case (a) in the linear regime of operation ( 50mVDSV = ). One can see from Figure 4-25 
that the reduction in drain current heavily depends on the position of the dopant and applied biases. Also 
for a given drain bias, the reduction in drain current in subthreshold is smaller than the value around 
threshold and with increasing gate voltage above threshold, the reduction in drain current gradually 
decreases. 
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Figure 4-25 Percentage reduction in drain current due to the presence of an unintentional dopant. Solid 
curve- case (a), at linear regime, dashed curve- case (a), in saturation regime and, dotted curve- case (b), at 
saturation. 
 
To explain this dependency of the reduction in drain current on applied biases , the 1-D potential energy 
profiles at the middle of the fin height along X direction for applied gate voltage of -0.4V (with 

0.4VDSV = and 50mV), -0.2V and 0.2V with 0.4DSV = V are shown in Figure 4-26. One can see from 
Figure 4-26 that for an applied gate voltage of -0.4V, the height of the intrinsic barrier is higher when the 
drain bias is low compared to the case with high drain bias. Therefore, for the particular position of the 
dopant simulated here (case (a)), the relative dominance of the localized barrier at low drain bias is less 
significant compared to the case with high drain bias. As a result the reduction in drain current at low drain 
bias is smaller than the reduction at high drain bias. This is true for the entire gate voltage sweep range used 
in this work. 
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Figure 4-26 One-dimensional conduction band energy profiles along X direction at different bias condition 
at y = h/2 with h =  4 nm, z = 6 nm. 
 
Considering case (a) at a fixed drain bias of 0.4V , in subthreshold regime ( GV = -0.4V) the intrinsic 
barrier is already high enough and the impact of the LB  due to the unintentional dopant is not that 
prominent but still present as the carriers would see it before reaching the intrinsic barrier. As the gate 
voltage increases ( GV =  -0.2V) the intrinsic barrier is lowered significantly and LB becomes the 
dominant one and consequently drain current reduces significantly. Again for sufficiently high gate voltage 
( GV =  0.2V) the intrinsic barrier is diminishing and for the particular position of UD (case (a)), carriers 
would not feel the LB as can be seen from Figure 4-26. Moreover, carriers, after overcoming the intrinsic 
barrier, are already accelerated by the lateral electric field. Therefore, the reduction in drain current 
gradually decreases with increasing gate voltage. 

Interestingly, the impact of an unintentional dopant on carrier transport is less significant when a top 
gate is added. The percentage reduction in drain current for TG and DG FinFETs for the case (a) is shown 
in Figure 4-27.  
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Figure 4-27 Percentage reduction in drain current due to the presence of an UD ((case (a)) for double-gate 
and tri-gate FinFETs at DSV =  0.4V. 
 
Overall, it is clear that TG devices are more efficient in suppressing impurity scattering effects. In on-state 
the current is reduced by 10% and 14% for TG and DG devices respectively from the corresponding 
nominal values (Figure 4-27), which gives about 30% better impurity suppression rate for TG over DG 
devices. Thus, in addition to the 25% improvement in on-current, 6 time reduction of the subthreshold 
source-drain leakage (Table 4-3), TG FinFETs also have the advantage of being less sensitive to impurity 
scattering effects when compared to DG FinFETs. 

The better impurity suppression in TG devices is illustrated in Figure 4-28, where the 1-D conduction 
band profiles along the Z direction crossing the position of the unintentional dopant (case (a)) are shown for 
TG and DG FinFETs. 
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Figure 4-28 One-dimensional conduction band energy profile along Z direction crossing the position of the 
unintentional dopant (case (a)) at 0.2V 0.4V,  GS DSV V= = . Also shown are the conduction band 
energy profiles without unintentional dopant. 
 

We, finally, return to the 2D simulation of the experimental FinFET presented in section 4.6.1. It has 
been conjectured there that the presence of unintentional dopant near the source side could be one of the 
reasons for the remaining discrepancy between the experiment and simulations. The 3D transport analysis 
for DG and TG FinFETs presented in this section (e.g., Figure 4-27) shows that for the impurity located 
near the source side, the reduction in current is at maximum around the threshold voltage. The same feature 
was observed when comparing the discrepancy between experimental and 2-D simulation (that did not 
include the impurity effects) results, thus implying that the conjecture made in section 4.6.1 is plausible. 
Also the trend of the reduction in drain current in the experimental FinFET when compared to the 2-D 
simulation is similar to the one obtained from 3D simulation of an UD sitting near the source end of the 
channel for DG FinFET as shown in Figure 4-29.  
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Figure 4-29 Blue curve- percentage reduction in drain current in the experimental device when compared to 
the corresponding 2-D simulation at DSV = 1.2V. Red curve- percentage reduction in drain current to an 
UD (case (a)) obtained from 3-D simulation of DG FinFET at DSV = 0.4V. 

 
However, in addition to the position of the unintentional dopant, the exact nature and magnitude of the 

reduction would also heavily depend on device geometry and the value of the biases (gate voltage and drain 
voltage). 
 
5. Reduced Density Matrix Formalism and its Application to Modeling 

RTDs 
 
As already pointed out in the description of the nonequilibrium Green’s function formalism in section 3, the 
current flow through the active region of a semiconductor device or a nanostructure is related to the 
efficiency of electron injection from the contacts. In disproving the Pauli master equation implementation, 
Frensley [37] argued that the injection from the contacts implies that density matrix approaches must 
include off-diagonal elements. Another view of the same problems is given by Pötz [149],  who explicitly 
worded the need to include the contact-active region interaction as arising from the fact that the active 
region is a quantum-mechanical open system, and a subsystem of a larger, (almost) closed system. 
(‘Almost’ predominantly appears here to caution us that we must not forget the battery, which re-injects 
electrons that have completed the transition through the structure. However, the inclusion of the battery is 
by no means a trivial question.) Recently, many authors have emphasized the importance of the proper 
treatment of contacts [150,151,152,153]. At this point, it is well established that the active region of a 
semiconductor device or a mesoscopic structure should be treated as an open system. In order to attribute 
mathematical terms to this notion, let us be a bit more precise: the active region is open [dynamically 
coupled to the contacts (reservoirs, leads)] in the sense that: 

• It exchanges particles with the contacts. Electrons are injected from/into the leads. Therefore, a 
formalism that is to be used in the description of the evolution of the current-limiting active region should 
be able to capture a varying number of electrons. Also, in the case of multiple electrons in the active region, 
it should in principle be able to account for electron-electron interaction within the active region.  

• It exchanges information with the contacts. The microscopic state of the contacts is important to 
what happens in the active region. For instance, if a bias is applied across a semiconductor structure, certain 
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single-particle states are full in the left and empty in the right contact, and this information should be 
present in the time evolution of the active region. Therefore, a theoretical description should account for the 
so-called memory terms that explicitly incorporate the microstate of the contacts in the evolution of the 
active region.  

• It is dynamically coupled to the contacts. There exists an interaction Hamiltonian between the 
active region and the contacts, and a correction to the energy spectrum of the active region occurs due to 
the interaction. Also, the levels of an isolated active region are known to become broadened (the lifetime of 
these states becomes finite) due to the coupling. Generally, electron-electron interaction between the 
electrons in the contacts and those in the active region should also be considered [154,155].  

These three points are not mutually independent. On the contrary, they are just different aspects of 
the fact that the active region is a dynamically open many-body system. While there are established 
formalisms adequate for treatment of small, few-level systems [156], it is very difficult to use the same 
techniques directly to treat relaxation in mesoscopic structures in a numerically tractable fashion. 
Nonequilibrium Green’s functions (NEGF) and the Wigner function formalisms address parts of the 
problem, but have their limitations. Basically, to fully describe the relaxation in many-body open systems, a 
completely general quantum transport transport formalism still needs to:  

• Not disregard the feedback that a nanostructucture  active region’s  evolution has on the contacts 
or (nonequilibrium) phonons. This feature requires going beyond the open-boundary approach of 
conventional nonequilibrium Green’s functions [153]. There is a well-known and widely exploited 
approach to open systems, the approach of reduced density matrices, but this approach generally works for 
small (few-particle) systems, such as molecules. [A (many-body) density matrix (or statistical operator) is a 
quantity more general than the quantum-mechanical wavefunction (state). For instance, it is capable of 
capturing information about population of different (many-body) states at finite temperatures. Just like the 
Hamiltonian, the density matrix (statistical operator) is an operator, acting on the Hilbert space inhabited by 
wavevectors. Henceforth, by the density matrix we will assume the generally many-body statistical 
operator, not the density matrix as defined through single-particle correlation functions].  

• Regard the full many-body nature of evolution, especially on short timescales. It has been pointed 
out by several authors [157,158] that, if we are to have a reasonable chance of understanding sub-
femtosecond processes (and consequently be able to go to upper THz frequencies), we need to put some 
thought into dealing with more than single-particle Green’s functions. Namely, the information about 
buildup and destruction of correlations is stored in multi-particle correlation functions [159]; ultimately, all 
correlation functions can be deduced from the many-body density matrix, a quantity rich in information but 
virtually impossible to compute in a real-world electronic systems.  

On the other hand, computing the correlation function <− iG  usually offers sufficient information 
for engineering transport calculations, but the NEGF formalism is formulated for closed systems, so it 
cannot capture the so-called memory effects. Even so, a rigorous equation of motion for <− iG  includes 
two-body correlations, the equations for which include three-body correlations, and so on (the Martin-
Schwinger hierarchy, see [160]), re-emphasizing the need for multi-particle correlations at short times 
[113].  

• Does not assume the thermodynamic limit. Physicists have long been occupied with highly 
nonequilibrium processes, and the ultimate test of a kinetic approach is how well it describes relaxation 
towards equilibrium. However, we often cite thermodynamic laws or use certain kinetic equations without 
even thinking twice that they are based on the thermodynamic limit (limit of the system consisting of N 
particles, ∞→N , and occupying a volume V, ∞→V , so that VN  is finite). So it is not true that no 
one has thought of devising ways to treat real-time relaxation in many-body systems [161], openness and 
all, but many of the most remarkable treatments are in the field of plasma physics, within the 
thermodynamic limit.  
 The problem with mesoscopic systems is that they contain neither very few, nor very many 
particles. For mesoscopic systems, not even the laws of thermodynamics hold in the form we are used to 
(see a very insightful paper by Gross [162], on the validity of the second law of thermodynamics in 
mesoscopic structures). This is precisely why short-time relaxation in these structures is so challenging: 
you can neither make common approximations, nor can you treat it with brute computational force without 
a significant loss of physics.  
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In section 5.1, we demonstrate how the approach of the reduced density matrices can be adapted to 
help build a bridge towards nonequilibrium transport calculations in mesoscopic systems. As an example, 
in section 5.2 we will derive a Landauer-like formula for a ballistic resonant-tunneling diode from first 
principles: by starting with a model Hamiltonian and using the reduced density matrix formalism. In 
section 5.3, we will also point out how the NEGF formalism can be adapted to include the memory effects 
important in truly open systems.  

 

5.1 Partial-trace-free approach to open systems. Equations with memory dressing 

5.1.1  Reduced density matrix (statistical operator) 
Describing the evolution of a quantum-mechanical system, coupled to its environment and influenced by 
external driving fields, is one of the oldest and most important problems in quantum mechanics (see, e.g., 
Ref. [161]). The problem actually lies in the attempt to describe the system’s time development, without 
necessarily having to collect too much information about the environment.  

Open systems are traditionally described by a reduced density matrix (a.k.a. reduced statistical 
operator) formalism. The density matrix is a quantity more general than the quantum-mechanical 
wavefunction. Namely, real world quantum-mechanical systems can rarely be described by just a single 
wavefunction (i.e., be in a pure state). For instance, a free gas of electrons at zero temperature can be 
described by a single many-body wavefunction—a single Slater determinant that corresponds to all one-
particle levels below the Fermi level being full, and those above it being empty. However, at a temperature 
greater than zero, there is a non-zero probability of the electron gas occupying other many-body states, 
such as that with one hole below the Fermi level and one electron above it. The (many-body) density matrix 
is a quantity capable of capturing information about the population of (many-body) states. Just like the 
Hamiltonian, the density matrix (i.e., statistical operator) is an operator, acting on the Hilbert space 
inhabited by wavevectors. If the quantum-mechanical system is closed, meaning that its dynamics are not 
influenced by the state of any external system, its density matrix ρ  obeys the quantum Liouville equation,  

[ ]ρρ ,hi
dt
d

−= , 

where h is the total (many-body) Hamiltonian.  
However, a real quantum-mechanical system is seldom closed. Rather, it is a part of a larger, 

approximately closed system. We therefore speak of the (open) system, while the rest is termed the 
environment. In the case of electronic transport, the electrons in the active region constitute the system, 
while the environment includes contacts, phonons, etc. The information about the system (our active region 
electrons) is obtained by tracing out the environmental states, which produces the reduced system density 
matrix ρρ ES Tr= , a quantity that contains all the quantum-mechanical information about the system 

(active region). The equation of motion for Sρ  will indeed contain information about the environment (the 
memory terms).  

The reduced density matrix approaches are very popular among physical chemists, and for generally 
small systems with at most a few particles. The problem is that we wish to extract the information about the 
open system without gathering too much information about the environment (even though the 
measurements are actually made in the environment). Many approaches have been devised to perform this 
task (see, for instance, a comprehensive recent book by Breuer and Petruccione [156]). A widely used 
approach to obtaining the equation of motion for the reduced system density matrix, is by using a 
projection-operator technique, introduced by Nakajima [163], Zwanzig [164] and Mori [165]. Variants of 
the projection operator technique have successfully been used in many fields. For example, Argyes and 
Kelley [166] presented a theory of linear response in spin-systems, Barker and Ferry [167] treated quantum 
transport in very small semiconductor devices, Kassner [168] analyzed relaxation in systems with initial 
system-bath coupling, Sparpaglione and Mukamel [169] presented a theory for electron transfer in polar 
media, followed by analyses of condensed phase electron transfer by Hu and Mukamel [170], and Romero-
Rochin and Oppenheim [171] addressed relaxation of a two-level systems weakly coupled to a bath. 
Essentially, all variations of the technique rely upon the use of two complementary projection operators to 
generate the equations of motion for two mutually orthogonal projections of the total 
‘system+environment’ density matrix. Equations of motion for the two projections are coupled, and the 
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equation for the relevant projection, i.e., the one yielding the reduced density matrix after a partial trace is 
taken over the environment states, can be obtained in a closed form. This requires incorporating a formal 
solution of the equation for the orthogonal projection. The resulting equation of motion for the reduced 
density matrix typically exhibits non-Markovian (or ‘time-convolution’) behavior. The non-Markovian 
nature and the need for full knowledge of the ‘system+environment’ (in order to take the partial trace over 
environmental states) are significant constraints on this approach. An equation of motion containing a term 
with a memory-kernel is particularly difficult to solve self-consistently, and one must often be satisfied 
with the fast-modulation (Markov) limit.  

In response to the difficulties arising from memory kernels in nonequilibrium statistical mechanics, 
Tokuyama and Mori [172] first proposed a time-convolutionless (also known as ‘memoryless’) equation of 
motion in the Heisenberg picture. Soon afterwards, derivations of Shibata et al.  [173,174] in the 
Schrödinger picture appeared, and this approach is the basis for much work that followed. This includes 
Saeki’s analysis of linear response of an externally-driven system coupled to a heat bath [175] and work on 
systems coupled to a stochastic reservoir [176,177]. The latter was extended by Ahn to formulate the 
quantum kinetic equations for semiconductors [178] and arrive at a theory of optical gain in quantum-well 
lasers [179]. Chang and Skinner [180] applied the time-convolutionless approach to analyze relaxation of a 
two-level system strongly coupled to a harmonic bath. More recently, Ahn et al. treated noisy quantum 
channels [181] and quantum information processing [182], and Golosov and Reichmann [183] analyzed 
condensed-phase charge-transfer processes.  Both the time-convolutionless equation of motion [173-183], 
and the non-Markovian equations described in the previous paragraph [163-171], are based on projection-
operator techniques. The difference is that, in the time-convolutionless approach, the memory effects are 
taken into account by evaluating particular evolution operators, which couple states of the system with the 
environment states, rather than through a term with a memory-kernel. However, the entire approach is 
based on the assumption of invertibility of one of the evolution operators, and this is an important and 
potentially problematic issue. Once a time-convolutionless equation for the relevant projection is obtained, 
a partial trace with respect to the environment states is performed, as before, to uncover the evolution of the 
reduced density matrix.  

The resulting time-convolutionless equation of motion for the reduced density matrix still has two 
major shortcomings. First, it has an explicit dependence on the choice of the projection operator (or, on the 
environment density matrix that induces the projection operator). This is unphysical, as the projection 
operator is just a tool, an external assumption, and in the end the equation of motion for the reduced density 
matrix should not depend on such assumptions. This does not mean that the time-convolutionless approach 
is incorrect, it just means that all the equations for different projection operators eventually must reduce to 
one and the same equation. The second shortcoming is that the partial trace used to obtain the evolution of 
the reduced density matrix (from the equation of motion for the relevant projection) requires one to 
evaluate large and unpleasant evolution matrices, only to extract significantly less information after the 
partial trace. In other words, one must obtain much more information than actually necessary. With 
increasing size of the ‘system+environment’, and inclusion of a time dependence due to external forces, 
this obstacle becomes more serious.  

In this Section, two main results are presented. First, we introduce a very useful and simple 
isomorphism between the space of operators acting on the system’s Hilbert space and the unit-eigenspace 
of the projection operator induced by the uniform density matrix of the environment. This allows us to 
derive a time-convolutionless equation of motion for the reduced density matrix, which is free of the partial 
trace with respect to environment states. This isomorphism enables us to effectively perform a partial trace 
with respect to the environment states without actually performing it: what we perform instead is a well-
defined basis transformation. Being partial-trace-free, this equation successfully addresses one of the 
shortcomings mentioned in the previous paragraph. It depends on submatrices considerably smaller than 
those in the conventional time-convolutionless approach [173-183], which makes the present approach 
especially interesting for numerical application in those cases where evaluation of large evolution matrices 
is particularly undesirable. Secondly, we point out that a time-convolutionless approach, conventional or 
partial-trace-free, is based on the assumption of invertibility of a particular ‘entanglement operator’, and 
show that this assumption is equivalent to the assumption of reversibility of the system’s evolution. This 
puts constraints on the applicability of time-convolutionless approaches in general. In particular, we 
investigate the application of the approach to the description of a steady state in far-from-equilibrium 
situations. 
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5.1.2  Basic definitions 
Consider a system S, interacting with its environment E, so that the ‘system+environment’ (S+E) is either 
closed, or influenced by external driving fields that are assumed known and unaffected by the feedback 
from S+E. The Hilbert spaces of both the environment and the system, EH  and SH  respectively, are 

assumed to be finite-dimensional, EE dimd H= , SS dimd H= . These two spaces form a tensor 

product Hilbert space of the ‘system+environment’, SEES HHH ⊗=+ , with dimensionality 

SEES dddimd == +H . The spaces of operators acting on EH , SH  and ES +H  will be denoted by 
2

EH , 2
SH  and 2

ES +H , respectively, whereas the elements of 2
EH , 2

SH  and 2
ES +H  (i.e., operators 

on EH , SH  and ES +H ) will be denoted by lowercase letters, Greek or Roman. Moreover, operators 

acting on 2
EH , 2

SH  and 2
ES +H , sometimes called superoperators, will be denoted by capital Roman 

letters. When there is no risk of confusion, we will simply refer to them as operators. 
Let us choose a basis { }Edii ,...,1=  in EH , and a basis { }Sd,...,1=αα  in SH , 

which induce a tensor-product basis { }SE ddiii ,...,1;,...,1 ==⊗≡ ααα  in ES +H . These 
naturally give rise to the following expanded bases:  
{ } { }

{ } 2

22

in11

in1in1

ESSE

SSEE

d,...,,;d,...,j,ijij,i

,d,...,,,d,...,j,ijiji

+==⊗≡

=⊗≡=⊗≡

H

HH

βαβαβα

βαβαβα
(5-1) 

For an operator x on ES +H  (i.e., an element of 2
ES +H ), one can write  

 

444 3444 21444 3444 21
2invectoras

1 1

onoperatoras

1 1

ES

E S

ES

E S d

j,i

d

,

j,i
d

j,i

d

,

i
j j,ixjixxx

++

∑ ∑∑ ∑
= == =

===

HH
βα

βα

βα

α
β βαβα ,  βαα

β
j,ii

j xx = ,  (5-2) 

whereas for an operator A that acts on 2
ES +H , the following form is valid 

 ∑ ∑
= =

=
E Sd

q,p,j,i

d

,,,

j,i
q,p q,pj,iAA

1 1γσβα

βα
γσ γσβα .   (5-3) 

Analogous expressions are easily obtained for elements of 2
EH , 2

SH , and operators on 2
EH , 2

SH . 

The total Hamiltonian h, acting on ES +H , consists of the system part SE hh ⊗= 1sys , the 

environment part SEhh 1env ⊗=  and the interaction part hint, so that  

 intenvsys hhhh ++= . (5-4) 

It is important to note that driving fields, provided by applied potentials, are included as part of the system. 
These are assumed to arise for 0tt > , and provide an explicit time dependence for h . The evolution of the 

total S+E density matrix ρ  is given by the quantum Liouville equation (we use units 1=h ) 

 [ ] ρρρ Li,hi
dt
d

−≡−= , (5-5) 
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where L  is the Liouville superoperator (superoperators will be denoted by capital roman letters) 
corresponding to h , and is of the form intenvsys LLLL ++= . Equation (5) actually represents a system 

of 22
SE dd  linear first-order differential equations on the time interval [ )∞∈ ,tt 0 . Since L is continuous 

throughout this entire interval, we are guaranteed to have a unique solution of  Eq. (5-5) on [ )∞∈ ,tt 0  for 

a given initial condition ( )0tρ  [184]. With Tc (Ta) denoting the chronological (anti-chronological) time-

ordering, Θ  being the Heaviside step function, and 0t  being the initial time at which we assume we know 

( )0tρ , the formal solution of Eq. (5-5) is given by  

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) .LdiexpttLdiexpttt,tU

,tt,tUt

t

t

a
t

t
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−′−=′

=

∫∫
′

′

ττΘττΘ

ρρ

TTc

00

 (5-6) 

The quantity that describes the evolution of the system S is the reduced density matrix Sρ , defined by 

 ( )ρρ ES Tr= , (5-7) 

where ( )...ETr  denotes the partial trace over the environment states. The goal is to deduce 
how Sρ  evolves, without having to gather too much information about the environment.  
 

5.1.3  Projection-operator technique. Conventional time-convolutionless  equation of motion 
A class of approaches based on projection operators yield the so-called time-convolutionless equation 
(TCE) of motion for the projection ρP  of the total S+E density matrix ρ , where P  is a projector 
generated by an arbitrary environment density matrix [156,172-183]. The term “time-convolutionless” 
means that the differential equation for ( )tPρ  at a time t formally depends only on ( )tPρ  and on 

( )0tQρ  at the initial time 0t , where PQ −= 1 . Instead of the notorious integral with the memory 

kernel, which requires knowing ( )τρQ  at all times τ  in the past ( tt ≤≤ τ0 ), special (invertible) 
operators are introduced, which account for the system’s memory of the environment’s evolution.  

Let us now choose an arbitrary environmental density matrix E
~ρ , which is constant in time. We 

introduce time-independent projection operators P~  and Q~ , which are associated with E
~ρ  and act on 

2
ES +H , as  

 P~Q~,x~xP~ EE −=⊗= 1Trρ ,   2
ESx +∈H . (5-8) 

In particular, since ( ) 1=EE
~Tr ρ  ( E

~ρ  is a proper density matrix), it follows that 

 ( ) ( ) SEEEEE
~P~ ρρρρρ ==⋅= TrTrTrTr .  (5-9) 

Therefore, the evolution of ( )ρP~ETr  should be described by an equation that is independent of E
~ρ  (or, 

equivalently, P~ ).  
Since P~  and Q~  are time independent, they commute with the time derivative.  Therefore, for the 

equations of motion of ρP~  and ρQ~ , we obtain from Eq. (5-5) 



  100  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ),tQ~tLP~itP~tLP~ittLP~i

dt
tP~d ρρρρ

−−=−=  (5-10a)  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )tP~tLQ~itQ~tLQ~ittLQ~i

dt
tQ~d ρρρρ

−−=−= . (5-10b) 

A formal solution of Eq. (5-10b) is of the form  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ +−=
t

t

tQ~t,tHtt,'tUP~'tLQ~'t,tH'dtitQ~

0

00 ρρρ , (5-11) 

where for 'tt >  

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

t

't

Q~sLQ~dsiexp't,tH cT . (5-12) 

Upon introducing 

 ( ) ( ) ( ) ( )∫+=
t

t

t,'tUQ~'tLQ~'t,tH'dtit;tK
0

10 , (5-13) 

Eq. (5-11) can be rearranged to give  
 ( ) ( ) ( )[ ] ( ) ( ) ( )0000 1 tQ~t,tHtP~t;tKtQ~t;tK ρρρ +−= .  (5-14) 

The second time variable in the argument of ( )0t;tK  is not exactly a variable. Namely, 0t  denotes the 
fixed initial time, which defines the initial conditions for K, and is separated from the first time variable t  
by a semi-colon instead of a comma to indicate that it is not a variable, but a fixed parameter. If ( )0t;tK  is 
invertible, which is an important question to which we will return, Eq. (5-14) becomes 

 ( ) ( )[ ] ( ) ( ) ( ) ( )00
1

0
1

0 1 tQ~t,tHt;tKtP~t;tKtQ~ ρρρ −− +−= , (5-15) 

and  (5-10a) can be rewritten as  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )00

1
0

1
0 tQ~t,tHt;tKtLP~itP~t;tKtLP~i

dt
tP~d ρρρ −− −−= . (5-16) 

After taking a partial trace with respect to the environment states, Eq. (5-16) will give us the equation of 
motion for Sρ  as 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] .tQ~t,tHt;tKtLitt;tKtLi

tQ~t,tHt;tKtLit~t;tKtLTri

tQ~t,tHt;tKtLP~itP~t;tKtLP~Tri
dt

td

ES~

ESEE

EE
S

E
00

1
0

1
0

00
1

0
1

0

00
1

0
1

0

Tr

Tr

Tr

ρρ

ρρρ

ρρ
ρ

ρ

−−

−−

−−

−−=

−⊗−=

−−=

 (5-17) 
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The last line was obtained by introducing 
E

~...
ρ

, which maps operators acting on 2
ES +H  onto operators 

acting on 2
SH : for any given A, 

E
~A
ρ

 is defined as  [ ] ( )∑
=

=
E

E

d

q,p,i

pq
E

i,i
q,p~

~AA
1

ρβα
γσ

αβ

σγρ
 [see Eq. (5-3)]. 

Eq. (5-16) is what we will refer to as the conventional time-convolutionless equation of motion for ( )tSρ  
[173-183].  

There are two features of Eq. (5-17) that need attention. First, within the partial trace in both terms on 
the right-hand-side of Eq. (5-17), there is an explicit dependence on the choice of the projection operator 
P~  (or, equivalently, on the environment density matrix E

~ρ  that induces the projection operator), so one 

must make a choice of E
~ρ  to actually be able to use Eq. (5-17). As E

~ρ  is just an external arbitrary tool, in 

the end the equation of motion for ( )tSρ  should not depend on it. This does not mean that the time-
convolutionless approach is incorrect, it just means that all the equations for different projection operators 
ought to, eventually, reduce to one and the same equation. What this equation is, or how to rigorously 
prove mutual equivalence of equations obtained using different projection operators, is not presently 
known. Secondly, due to the partial trace, one must evaluate generally large and unpleasant evolution 
matrices U, H and K, only to extract significantly less information after the partial trace. Much more 
information than actually necessary has to be obtained. With increasing size of the ‘system+environment’ 
and inclusion of a time-dependence due to external driving, this obstacle becomes increasingly serious 
when numerical implementation of Eq. (5-17) is considered. Thirdly, it is obvious that the entire approach 
is based on invertibility of K , which may be a requirement hard to fulfill with some approximations. 
These are the most prominent problems with the applicability of the conventional time-convolutionless 
approach, and they are addressed in the following sections. 

5.1.4  Eigenproblem of a projection operator. Partial-trace-free approach 
As noted previously, a serious constraint on the application of the conventional time-convolutionless 
approach (5-17) in large systems is evaluation of large matrices, when not all the information contained in 
them is needed. In this section, we derive a partial-trace-free equation of motion for Sρ , which 
successfully addresses this issue. 

Some features of the eigenvalue problem of P~  are virtually obvious: P~  is Hermitian, and it is easily 
verified that P~  is idempotent, i.e., P~P~ =2 . Hence, the eigenvalues are 0 and 1. On the other hand, by 

construction (5-8), the image space of P~  corresponds with 2
SH , so one sees that the eigenspace of P~ , 

corresponding to the eigenvalue 1, ought to be isomorphic to 2
SH . An important and useful point that we 

need to recognize is the decomposition of 2
ES +H  into a direct sum of eigenspaces of P~   

 ( ) ( ) 0
2

1
22

=+=++ ⊕= PESPESES HHH , (5-18) 

where ( ) 1
2

=+ P~ESH  is the 2
Sd -dimensional unit eigenspace, and ( ) 0

2
=+ P~ESH  is the ( )122 −ES dd -

dimensional zero eigenspace.   
If we choose an orthonormal eigenbasis of P~ , { }221 SE dd,...,n~n~ = , so that, according to 

decomposition (5-18), the first 2
Sd  basis vectors span ( ) 1

2
=+ P~ESH , we will be able to write  

 ∑
=

=
2

1

Sd

n~
n~n~P~ . (5-19) 
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The crucial question that we ask is: is it possible not to mix original basis vectors βα j,i  with 

different βα ,  to obtain a given n~ ? The answer is: yes, if and only if the density matrix inducing the 
projection operator is the uniform density matrix [185], i.e.,  
 

EE ddEE d ×
− ⋅≡ 11ρ , (5-20) 

with the associated projection operator denoted by P . One indeed finds that the vectors defined as 

 ∑
=

≡
Ed

iE

i,i
d 1

1 βαβα  (5-21) 

constitute an orthonormal basis within the unit-eigenspace of P , namely  

 βαβα =P ,    βγασ δδγσβα = ,    ( )γσβα ,,,∀ . (5-22) 

P  can therefore be written as  

 ∑
=

=
Sd

,
P

1βα

βαβα , (5-23) 

and it follows that   

 ( )∑
=

=
Sd

,
xPxP

1βα

αβ βα ,  (5-24) 

where  

 ( ) ,x
d

xi,i
d

xxP
BE d

i

i,i

E

d

iE
∑∑

==

===
11

11 βααβ βαβα  (5-25) 

(we identified xx =  to take advantage of the compactness of the Dirac notation). Using the fact that 

xTrE , being a vector in 2
SH , is written in terms of the basis { }βα  as  

 ( ) ∑ ∑∑
= ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

S ES d

,

d

i

i,i
d

,
EE xxx

1 11

TrTr
βα

βα

βα

αβ βαβα   , (5-26) 

from Eq. (5-25), we obtain the crucial equation for the rest of this work: 

 ( ) ( ) EE dxxP αβαβ Tr= . (5-27) 

Eq. (5-27) represents a very useful isomorphism between ( ) 1
2

=+ PESH , (the unit-eigenspace of P ) and 
2
SH . We have managed to ‘preserve’ the identity of basis vectors { }βα  from 2

SH  when mapping to 

( ) 1
2

=+ PESH . This isomorphism is basis-induced, and enables us to effectively perform a partial trace with 
respect to the environment states without actually performing it: instead, what we do perform is a basis 
transformation in 2

ES +H .  
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This basis in the unit eigenspace is complemented by an orthonormal basis in the zero eigenspace 
[185]. According to the decomposition (5-18), a vector 2

ESx +∈H  can be represented in the complete 

eigenbasis of P  by a column  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

x
x

x , (5-28a) 

and the projectors are represented by  

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

10
00

00
01

Q,P .  (5-28b) 

Taking the partial trace with respect to E of any S+E observable x gives what the system sees of this 
observable. It is important to stress that, from now on, we will make no distinction between a system 
variable xx ES Tr=  and its representation column in the basis { }αβ  of 2

SH . Therefore, for Sx  being 

the representation column of xx ES Tr=  in the basis { }αβ  of 2
SH , according to Eq. (5-27) we obtain  

 ES dxx ⋅= 1 .  (5-29) 

In the eigenbasis of P , a superoperator A that acts on 2
ES +H  is, in general, represented by a block-

matrix form 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

AA
AA

A . (5-30a) 

If the operator  sysA  is a system operator, i.e., an operator of the form SE AIA ⊗=sys , where SA  acts 

on 2
SH , then sysA  commutes with P , and is therefore represented by a block-diagonal form in the 

eigenbasis of P . Furthermore, the block-diagonal form is such that the upper-left block-matrix is exactly 
the one representing SA  in the basis { }αβ   (see the Appendix B of Ref. [186]), namely, 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⊗=

2
sys 0

0
A

A
AIA S

SE . (5-30b) 

 

5.1.5  Partial-trace-free time-convolutionless equation of motion for the reduced density matrix 
According to Eq. (5-27), there is a very simple correspondence between how ρP  looks in terms of the 

eigenbasis { }βα , (4.21), and how Sρ  looks in terms of the basis { }βα  in 2
SH . Using this result, 

we conclude that the evolution of the representation matrix of Sρ  can be tracked in ( ) 1
2

=+ PESH  directly, 

by following the evolution ρP  without taking the partial trace with respect to the environment states 

(which would mean going back to 2
SH ). However, that everything must be written in the eigenbasis of 

P (Figure 5-1). , whose first 2
Sd  vectors are { }βα , Eq. (5-21), and the rest is straightforwardly 

constructed. In the eigenbasis of P , the total density matrix is given by  
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 ES d, 1
2

1 ρρ
ρ
ρ

ρ =⎥
⎦

⎤
⎢
⎣

⎡
= . (5-31a)  

The Liouville operator and the evolution operator from Eq. (5-6) are given by the block forms  

 ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )⎥⎦
⎤

⎢
⎣

⎡
′′
′′

=′⎥
⎦

⎤
⎢
⎣

⎡
=

t,tUt,tU
t,tUt,tU

t,tU,
tLtL
tLtL

tL
2221

1211

2221

1211 , (5-31b) 

where ( )+= 1221 LL  (L is Hermitian), and U is unitary. When equations (5-5) and (5-6) are written out in 
their matrix representations, we obtain  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),ttiLttiL
dt

d

,ttiLttiL
dt

d

222121
2

212111
1

ρρ
ρ

ρρ
ρ

−−=

−−=
 (5-32a) 

and  

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) .tt,tUtt,tUt

,tt,tUtt,tUt
′′+′′=

′′+′′=

2221212

2121111

ρρρ
ρρρ

 (5-32b) 

The block forms of H and K from Eqs. (5-12) and (5-13) are are readily written as  

 

( ) ( ) ( )

( )
'tt,

t,t'H

sLdsiexpQsLQdsiexpt,t'H t

t'

c

t

t'

c

>
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∫∫

22

22

0

01

T0

01
T

 (5-33a) 

 

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) .
t;tKt;tK

t',tUt'Lt,t'Hdt'it',tUt'Lt,t'dt'Hi

t',tUt',tU
t',tUt',tU

t'Lt,t'H
dt'it;tK

t

t

t

t

t

t

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+=

∫∫

∫

022021

122122112122

2221

1211

2122
0

01

1

01

0
00

0
01

1

00

0

 (5-33b) 

We see that ( )0t;tK  is invertible if  

 ( ) ( ) ( ) ( ) ( ) 01 1221220220

0

≠
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+== ∫ t',tUt'Lt,t'Hdt'idett;tKdett;tKdet

t

t

. (5-34) 

If Eq. (5-34) is fulfilled, from Eq. (5-33b) we obtain  
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 ( ) ( ) ( ) ( )⎥⎦
⎤

⎢
⎣

⎡
−

= −−
−

022021022
0

1
11

01
t;tKt;tKt;tK

t;tK . (5-35) 

Using the block forms Eqs. (5-28)-(5-35), the equation of motion for ρP  (4.16), and the isomorphism Eq. 
(5-27), we obtain  

 

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( ).tρt,tHt;tKtLdi

tρt;tKt;tKtLtLi
dt

tdρ

E

S
S

020220
1

2212

0210
1

221211

−

−

−

−−=
 (5-36) 

Equation (5-36) is the so-called partial-trace-free time-convolutionless equation of motion for Sρ . It 

actually describes the evolution of the representation matrix of Sρ  in the basis { }βα . Dealing with 
representation matrices in a given basis, rather than a representation-independent form, is not a downside in 
itself, particularly if one has numerical implementation in mind. In this partial-trace-free form, 
multiplication of generally non-square submatrices (e.g., 1

2212
−KL ) is what mimics the partial trace. 

Moreover, since no explicit dependence on the projection operator used is present, the partial-trace-free 
equation (5-36) offers a clearer picture as to what elements of the Hamiltonian h, through the evolution 
submatrices, actually come into play. This increased transparency will prove useful be useful when 
choosing and employing different approximations.  

 

5.1.6 “Purely system states” and “entangled states” 

We have established that there are two classes of states in 2
ES +H : those from ( ) 1

2
=+ PESH , and those from 

its orthocomplement ( ) 0
2

=+ PESH . Due to the isomorphism given by Eq. (5-27), which reveals that the 

states from ( ) 1
2

=+ PESH  faithfully represent (within the total Liouville space) what goes on with the system, 

we will call the states from ( ) 1
2

=+ PESH  the purely system states. Also, we see [Eqs. (5-30a,b)] that the 
upper-left block matrix of any S+E superoperator can be dubbed the “purely system part” of that 
superoperator. For instance, the upper-left block matrix 11L  of the Liouvillian  is of the commutator-

generated form, i.e., it corresponds to an effective system Hamiltonian eff,Sh  given by  

 ( ) EES,S d/hTrhh inteff += , (5-37) 

which accounts for the well-known first-order correction to the system energy spectrum [175-177], due to 
the coupling with the environment (see Appendix C of Ref. [186]).  
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( ) ( ) EED dxTrxP αβαβ
=

2
SH

αβ  basis

purely system 
states

entangled states

( ) 1
2

=+ PESH
αβbasis

system Liouville
space

( ) 0
2

=+ PESH

( ) ( ) EED dxTrxP αβαβ
=

2
SH

αβ  basis

purely system 
states

entangled states

( ) 1
2

=+ PESH
αβbasis

system Liouville
space

( ) 0
2

=+ PESH

 
Figure 5-1. Decomposition of the total Liouville space into the eigenspaces of the projection superoperator 
P , and identification of the purely system states and the entangled states. The purely system states and the 
states from the system Liouville space are related via the isomorphism given in Eq (5-27). 

States from ( ) 0
2

=+ PESH , the orthocomplement to ( ) 1
2

=+ PESH , we call the entangled states, in keeping 

with the general nomenclature of quantum information [187]. The decomposition of 2
ES +H  and the 

isomorphism (5-27) are depicted in Figure 5-1. It is crucial here to clarify what we mean by purely system 
states and by entangled states. Namely, in quantum information theory, entanglement has a precise 
definition (see, e.g., Ref. [187]): a composite system (S+E) is said to be in a non-entangled (separable) 
state, if its density matrix can be written as a linear combination of tensor products of the subsystems’ 
density matrices (here, density matrices of the system and the environment). Otherwise, the composite 
system is said to be in an entangled state.  

In the present approach, the purely system states are the S+E vectors of the form 
xTrx EE ⊗= ρ , i.e., those which are of a particular separable form. This form is special because all 

density matrices that are among the purely system states are of such a form that the information entropy of 
the environment in such states is maximal: in other words, since its density matrix is uniform, the 
environment has no information to transmit to the system. Therefore 
 ( ) ( ) ( ) ( ) ( )ESES sssss ρρρρρ +≤+≤ , (5-38) 

where s denotes the information (von-Neumann) entropy. Equation (5-38) means that, among all the S+E 
states ρ  that yield a given reduced density matrix Sρ , the purely system state corresponding to that Sρ  
is the one with the largest entropy [188]. So, we can think of the purely system states as the states depleted 
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of environmental information. In a similar fashion, what we call the entangled states should alternatively be 
thought of as the states rich in environmental information. In that sense, since the information exchange 
between the system and the environment is another way of (loosely) stating that the system and 
environmental states become entangled, we believe that choosing the name “entangled states” for the 
vectors in ( ) 1

2
=+ PESH  is fairly appropriate, and certainly rolls off the tongue better than, for instance, 

“states rich in environmental information”. We are, however, aware that the name “entangled states” can be 
considered as somewhat of a misnomer in the present context. 
 

5.1.7  Memory dressing and the reduced density matrix 
Within the partial-trace-free approach, i.e., in the eigenbasis of P , the equations of motion for the 
projections 1ρ  and 2ρ  of the density matrix [see Eqs. (5-16) and (5-15), respectively], can be written as  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ),tt,tHt;tKtt;tKt;tKt

,tρt,tHt;tKtLitρt;tKt;tKtLtLi
dt

tdρ

020220
1

2210210
1

222

020220
1

221210210
1

221211
1

ρρρ −−

−−

+−=

−−−=
(5-39) 

where 22H , 21K  and 22K , defined in Eqs. (5-33a,b), also satisfy the following equations with the 
corresponding initial conditions  

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) .t;tK,t;tK

,tLt;tiKtLt;tiKt;tKtiL
dt

t;tdK

,tLt;tiKtLt;tiKt;tKtiL
dt

t;tdK

,Ldiexpt,tH
t

t

10

T

00220021

120212202202222
022

210221102102122
021

22
c

022

0

==

++−=

++−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫ ττ

 (5-40) 

As before, the second time variable in the argument of submatrices ( )012 t;tK  and ( )022 t;tK  is not 

exactly a variable. Namely, 0t  denotes the fixed initial time, which defines the initial conditions for K’s, 
and is separated from the first time variable t  by a semi-colon instead of a comma.  

According to Eq. (5-39), the equations of motion for the evolution submatrices [see Eqs. (5-31b) and 
(5-32b)], with the second time argument fixed to 0t , are given by 

 

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ] .t,tUt;tKt,tHt;tKt,tU

,t,tUt;tKt;tKt,tU

,t,tHt;tKtiL

t,tUt;tKt;tKtLtLi
dt

t,tdU

,t,tUt;tKt;tKtLtLi
dt

t,tdU

0120210220
1

22022

0110210
1

22021

0220
1

2212

0120210
1

221211
012

0110210
1

221211
011

−=

−=

−

−−=

−−=

−

−

−

−

−

 (5-41) 
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The above are generic time-convolutionless equations of motion, and are generally well known (maybe not 
necessarily in this particular form, which is valid for any choice of the projection operator as long as we are 
writing the equations in the projection operator’s eigenbasis). Note that 21U  and 22U can be written in 

terms of 11U and 12U , which is a typical feature of time-convolutionless approaches. If we are to solve 
equations (5-41), we first have to solve the very unpleasant equations (5-40), among which the equations 
for 21K  and 22K  are coupled. Even if we were to solve (5-40), in order to obtain a solution to (5-41) we 

need to perform an additional unappealing task of inverting 22K . With the increasing dimension of the 

S+E Hilbert spaces, 22K  becomes large [the largest matrices we deal with are 222222 U,K,H , of 

dimension ( ) ( )11 2222 −×− ESES dddd ; needless to say, one would not want to unnecessarily invert one of 
them].  

Luckily, there is a way out of this unpleasant situation. If we examine equations (5-41) more 
closely, we will notice that we do not actually need all three matrices 222122 K,K,H  from Eqs. (5-40). 
The quantities we do need for the equations of motion (5-41) are actually 

 
( ) ( ) ( )

( ) ( ) ( ).t,tHt;tKt;tS

,t;tKt;tKtR

0220
1

220

0210
1

22

−

−

=

=
 (5-42) 

Notice that we have omitted the time quasi-variable 0t  in defining R. It does not mean that this information 

is not present or important; on the contrary, choosing 0t  defines the initial condition for R . But, it will 
become apparent below why keeping R with one time-variable only is in the service of transparency and 
intuitive plausibility.  

It is easily shown, by using equations (5-40), that R and S satisfy the following equations of 
motion: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( ) .t;tS,t;tStLtiRtLi
dt

t;tdS

;tR,tiLtLtiRtRtLtiRtRtiL
dt

tdR

1

0

0001222
0

021111222

=+−=

=++−−=

 (5-43) 

Therefore, if one is to solve for the evolution of the reduced density matrix Sρ , starting from a given 

initial S+E density matrix ( ) ( ) ( )[ ]Tttt 02010 ρρρ = , one only needs to solve the following equations 
(with corresponding initial conditions) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) .t,tU,t;tStiLt,tUtRtLtLi
dt

t,tdU

;t,tU,t,tUtRtLtLi
dt

t,tdU

;t;tS,t;tStLtRtLi
dt

t;tdS

;tR,tiLtLtiRtRtLtiRtRtiL
dt

tdR

0

1

1

0

00120120121211
012

00110111211
011

0001222
0

021111222

=−−−=

=−−=

=+−=

=++−−=

 (5-44) 

(Again, these equations hold for any projection operator, provided that we are writing equations in that 
projection operator’s eigenbasis.) Also, the remaining two submatrices evolve according to 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )0120022011021 t,tUtRt;tSt,tU,t,tUtRt,tU −=−= ,  
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but we have no interest in them at present. Their evolution is of interest when calculating, for instance, two-
time correlation functions in electronic transport [189], which requires ( ) 0tt,t,tU ≠′′ . We are interested 

here only in deducing how the evolution of the reduced density matrix proceeds after 0t , for which we 

need the initial  S+E density matrix ( )0tρ , and submatrices ( )011 t,tU  and ( )012 t,tU . 
At this point, it is useful to note several features of equations (5-44): First, R has a self-contained 

nonlinear equation of motion, which should obviously be the starting point of a calculation.  This equation 
is a matrix Riccati equation, whose general properties and solutions are the subject of active research, 
especially in control systems theory [190]. We will solve this equation of motion below. Secondly, 
evolution of 11U  obeys a Liouville-like equation, with a generally non-Hermitian “quasi-Liouvillian” 

( ) ( ) ( )tRtLtL 1211 − , with RL12  obviously playing the role of an effective, memory-containing 

interaction. Since we have already identified 12L  as the term accounting for the real physical interaction, it 

is then clear that ( )tR  plays the role of a memory dressing of the interaction, and this is what we will call 

it henceforth. In the evolution of 12U , we see an effective driving term, SiL12− , in addition to the quasi-

Liouvillian ( ) ( ) ( )tRtLtL 1211 − . 

(A) Evaluation of the memory dressing R(t) 

Since the memory dressing R apparently plays an important role in calculation of the evolution 
operators time dependence, we will now solve its equation of motion  

 .iLiRLRiRLRiL
dt
dR

21111222 ++−−=  (5-45) 

(We will omit the time arguments for brevity). Regardless of the interaction strength (i.e., the magnitude of 

12L ), this equation is complemented by the initial condition ( ) 00 =tR . We will thus solve it by forming a 

power-expansion in terms of 12L  (or 21L , which is the adjoint of 12L ,), i.e., by assuming the form  

 ( ) ( ) ( ) ,tRtR
n

n∑
∞

=

=
0

 ( ) ( ) ( )221112 offunction L,LLR nn ×= . (5-46a) 

(The right-hand-side equation of (5-46a) is a symbolic expression, because 12L  is not a square matrix, so 

its powers are not defined. Rather, ( )nR  is a product of generally non-square matrices, so that 12L  and its 
adjoint appear a total of n times in the product, whereas the other matrices in the product depend only on 

11L  and/or 22L .) In addition, for all n, the following initial condition holds:  

 ( ) ( ) .n,tR n 000 ≥=  (5-46b) 

For the zeroth order term, the equation of motion is obtained as  

 
( )

( ) ( ) .LiRRiL
dt

dR
11

00
22

0

+−=  (5-47a) 

A general solution of Eq. (5-47a), for times 0tt ≥  (which are the only times meaningful to investigate, as 
we do not have sufficient knowledge about the system prior to t0), is given by  

 ( ) ( ) ( ) ( ) ( ) ( )⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫∫ ττττ 110

0
22

c0

00

TT LdiexptRLdiexptR
t

t

a
t

t

. (5-47b) 
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Since, ( ) ( ) 00
0 =tR , for all times t we have  

 ( ) ( ) 00 =tR . (5-47c) 

The equation of motion for the first-order term ( )1R  reads  

 
( )

( ) ( ) .iLLiRRiL
dt

dR
2111

11
22

1

++−=  (5-48a) 

This is an inhomogeneous linear equation, with the general solution  

( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( )

( ) .Ldiexp

LdiexpiLLdiexpdtR

LdiexptR

t

t

a

t

t tt
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t

t
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⎜
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⎠
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c
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0 00
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T

 (5-48b) 

With the initial condition ( ) ( ) 00
1 =tR , we obtain  

 ( )( ) ( ) ( )[ ] ( ) .LdiexpiLLdiexpdtR
t

a
t

t

t

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′′−= ∫∫ ∫ ττττττ

ττ
112122

c1 TT
0

 (5-48c) 

At this point it is useful to recall that, in the absence of coupling (i.e., 012 =L ), the off-diagonal evolution 

submatrices become zero ( ( ) ( ) 00 0
12

0
21 == U,U ). Moreover, for 0tt,t >′ , we obtain the diagonal 

evolution submatrices in the form: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .LdiexpttLdiexpttt,tU

,LdiexpttLdiexpttt,tU

t

t

a
t

t

t

t
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t

t
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⎠

⎞
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⎛
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⎠
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⎛
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⎠

⎞
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TT
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 (5-49) 

(As before, Θ  denotes the Heaviside step function.) Each of the submatrices ( ) ( )0
22

0
11 U,U  is unitary, and 

these evolution submatrices, for purely system states and entangled states separately, form groups [note that 
operator ( )022 t,tH  from Eq. (5-40) is actually just ( ) ( )0

0
22 t,tU ]. We can now rewrite (5-48c) as 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ),t,UiL,tUdtR
t

t

ττττ 0
1121

0
22

1

0

∫=  (5-50) 

which is the form we will use frequently later. It was important to evaluate the first-order-correction 
explicitly, as the only free term (i.e., term not containing R) in Eq. (5-45) is of the first order in 12L  [the 
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21iL  term on the right-hand-side of Eq. (5-45)]. For all higher orders 1>n,n , it is straightforward to 
prove, using Eq. 5-45), that 

 
( )

( ) ( ) ( ) ( )∑
−

=

−− +−−=
1

0
11

1
1222

n

k

nknkn
n

.LiRRLRiRiL
dt

dR
 (5-51) 

Lemma 1: All even-order terms in R are zero, i.e.,  
 ( ) ( ) .k,tR k 002 ≥=   (5-52) 

The detailed proof is given in Ref. [191]. 
Lemma 2: Odd-order terms, ( ) 112 ≥+ k,R k , can be calculated according to  
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+ ∫ ∫ ∫  (5-53) 

where  

 ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ,tt,t,UiL,tUdtRt
t

t
0

0
1121

0
22

1

0

≥== ∫ ττττR  (5-54a)  

 ( )
( ) ( ) ( )
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⎨
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=′ 00
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The quantity P  is called the information-exchange propagator. The detailed proof is given also in Ref. 
[191]. 
Theorem: The solution of equation (4.45), with the initial condition ( ) 00 =tR , is given by 

( ) ( ) ( )

( ) ( ) ( )[ ] ( ) ( )[ ] ( )∑∫ ∫

∑
∞

=
−

∞

=

+

−−+=

=

1
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t

t

t
kkkkk

k

k

t,iL,...iL,td...dt

tRtR

ττττττττ PPPPR
 (5-54c) 

The proof follows a straightforward implementation of Lemmas 1 and 2.  
Now that we have formally solved the equation of motion for the memory dressing R , and introduced 

the information-exchange propagator P , let us try to develop an intuitive feeling of what these results 
actually mean.  In Figure 5-2, ( )tR  is depicted. We see that ( )tR  calculates a cumulative effect that the 
purely system states have on the entangled states, provided that at any given time the information exchange 
is due to the first order in coupling. Note that, to obtain ( )tR , we go backwards in time among the purely 

system states (which evolve as if there were no coupling, according to ( )0
11U ), then the interaction occurs, 

and afterwards the entangled states evolve forward in time, again as if there were no coupling.  
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Figure 5-2. Diagrammatic representation of ( ) ( )( )tRt 1≡R , the first-order contribution to the memory 
dressing. 

 
Figure 5-3. The information-exchange propagator ( )t,t ′P  for different orderings of t and t’. a) tt ′> . b) 

t't > . 
 

 
Figure 5-4. Diagrammatic representation of R(3)(t),the third-order contribution to the memory dressing. 
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Figure 5-5. Diagrammatic representation of the two topologically nonequivalent contributions to R(5)(t), the 
fifth-order term in the memory dressing. 

Figure 5-3 presents a diagrammatic representation of ( )t,t ′P  for two different orderings of t and t’. Note 

how ( )tR  is always present at the later of the times. In Figure 5-4, the third-order correction to the 

memory dressing R is depicted. Note how, if one uses the result for ( )t,t ′P  depicted in Figure 5-3, we see 
that this third-order correction contains a cumulative effect that the purely system states have on the 
entangled states, provided that at any given time the information exchange is due to the third order in 
coupling ( ( ) ( ) ( )τττ 211221 LLiL  at time τ in the figure.) In Figure 5-5, we see two topologically 
nonequivalent contributions to the fifth-order correction.  
 

5.1.8  Short-time evolution in the case of initially uncorrelated system and environment  
With the inclusion of the memory dressing, we have now managed to obtain the evolution in the form  

 [ ] ( ) ( )020121211 ; tttSLdiRLLi
dt

d
ES

S ρρ
ρ

−−−=    

In the case when the system and the environment start from an initially uncorrelated state, i.e., the initial 
density matrix is of the form ( ) ( ) ( )000 ttt SE ρρρ ⊗= , it is possible to completely reduce the problem to 
subspace 1, namely it is possible to write     
 ( ) ( ) ( ) ( )0

2/1
0102 tMdtMt SE ρρρ −== ,    (5-56) 

where the mapping M is completely determined by the components of ( )0tEρ , the initial environmental 
density matrix [192]. The above equation embodies the argument made by Lindblad [193] that a 
subdynamics exists only for an initially uncorrelated state, as it enables one to write  

 [ ] ( ) ( )00121211 , tMttSiLRLLi
dt

d
SS

S ρρρ
−−−=  (5-57a) 

or in the integral form 
 ( ) ( ) ( )[ ] ( )0012011 ,, tMttUttUt SS ρρ += .  (5-57b) 

Without the loss of generality, we can assume that there exists a time-dependent generator of the above map, 
i.e., that the above map can be rewritten in the form 
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 ( ) ( ) ( ) ( )0

0

expT ttdttLit S

t

t
eff

c
S ρρ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Γ−−= ∫ ,  (5-58) 

where ( )tLeff  is an undetermined effective Liouvillian and ( )tΓ  is the decoherence exponent. In the 

Markovian approximation, .const
dt
diLeff =
Γ

−−  is of the well-known Lindblad form [194] and generates 

a semigroup of completely positive maps. Complete positivity of a dynamical map means that the unit trace 
and positivity of the density matrix are preserved at all times, but also that the evolution is robust enough to 
support tensor products - for example, two noninteracting systems evolving according to completely 
positive maps can together be described by a tensor product of those maps, itself a completely positive 
map.  

When we perform the short-time Taylor expansion of the exact equation (5-58) up to the second order 
in time around 00 =t , we obtain an approximate completely positive map in the form  

 ( ) [ ] ( ) ( ),0exp 32 tottLt SeffS +Λ−−= ρρ   (5-59) 

where  
 [ ] [ ],...,... intint hLhhL SSeff +=+=   (5-60a) 

and Λ  is a superoperator acting on the system Liouville space, whose matrix elements in a basis αβ  in 
this space are given by  
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Operator Λ contains essential information on the directions of coherence loss in both non-Markovian and 
Markovian systems [192].  

 

5.1.9   Coarse-grained Markovian evolution  
There are generally two rigorous ways to obtain Markovian evolution from non-Markovian ones: one is the 
weak-coupling limit in conjunction with the long-time limit on appropriately rescaled timescale (the so-
called van Hove limit, where the time ∞→t  and the interaction 0int →h , so that the product  th 2

int  is 
constant and finite); the other is the so-called singular coupling limit, which basically embodies the fact that 
the environment has a mechanism through which its internal state can be reset after a short, finite time (this 
resetting mechanism basically means that SE is not truly closed, but open as well, so there is an outermost 
environment responsible for resetting of environment’s state, but with which our system does not interact 
directly). The notion of the environmental memory being reset is at the heart of what we can do to construct 
Markovian maps for nanoscale electronic systems, because we generally know that dephasing in the leads 
(also known as contacts or reservoirs) typically occurs on the timescales of at most a few hundred 
femtoseconds [195], even at low temperatures, due to efficient electron-electron scattering. Electron-
electron scattering forces the distribution function in the leads back into a (possibly displaced) Fermi-Dirac 
distribution function; so if we are not interested in resolving timescales shorter than about a picosecond, the 
Markovian approximation should be fine due to this built-in resetting mechanism.  

So how do we obtain this Markovian map from the exact non-Markovian one? One approach would be 
to coarse-grain the exact evolution over an effective memory retention time τ  of the environment (the 
energy relaxation time in the bulk-like contacts). This approach is satisfactory in cases when we care the 
most about describing the nonequilibrium steady state, and not necessarily how long it exactly takes  to 
reach this state. So the coarse-grained Markovian map is derived as [201,192]  
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 ( ) Seff
S iL

dt
d

ρτ
ρ

Λ−−= .  (5-61) 

Clearly, the steady state must belong to the common null-space of Λ  and effL . Next, on the example of a 
resonant-tunneling diode, we demonstrate how the above Markovian map straightforwardly yields the well-
known I-V curve that manifests the prominent negative differential resistance features.  
 

5.2  Decoherence in the active region of a resonant-tunneling diode 
 
A resonant-tunneling diode (RTD) is a two-barrier tunneling structure, fabricated on a high mobility two-
dimensional (2D) electron gas. Typical dimensions of both the barriers and the well range from 2 to 5 
nanometers. The barriers are usually AlGaAs, while the well is GaAs, all grown by molecular-beam 
epitaxy. The interaction between the active region and the contacts has so far been addressed within the 
model of the RTD as a two-level system, where the electron can either be in the RTD bound state (“+” 
state) or absent from the RTD (“-” state) [196]. However, since the RTD naturally has open boundaries and 
continuous spectrum, the two-level model must usually be supplemented with a phenomenological 
resonance width to account for the fact that quite a few plane waves from the contacts contribute to the 
making of the bound state. Moreover, the continuum-state increase after the valley cannot be captured by 
employing a two-level model for the RTD. The openness of the RTD active region has also been addressed 
in the works of Frensley [37] and Pötz [149, 197], as well as in the works of the Purdue group 
[198,199,200] where the contacts are accounted for through a special injection self-energy term. 
    

 
Figure 5-6: Schematic of a resonant-tunneling diode under bias -V applied to the left contact. 

 
A schematic of the simulated RTD under bias is given in Figure 5-6. The RTD well width is 3 nm, 

each barrier’s thickness is 5 nm, and the barrier height is 0.3 eV. The Fermi level in each contact is at 0.1 
eV, below the equilibrium bound state, which is at 0.15 eV. A negative bias V is applied to the left contact. 
While still focusing on the active region/contacts interaction, we will offer an RTD model different from 
those previosuly published. Any given energy *22 2/ mkEk h=  above the bottom of the higher, left 
contact, is a doubly degenerate eigenvalue of the single particle Hamiltonian of the RTD; to this value 
correspond a forward propagating solution kΨ  and a backward propagating solution k−Ψ . These functions 
are not plane waves, but rather correspond to the plane waves being injected from the left and the right 
contacts, respectively, and have the following behavior to the far left ( Lx , the left boundary of the active 
region) and right ( Rx , the right boundary of the active region) of the heterostructure:  
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where k and k’ are the wavevectors in the left and right contact, respectively, that correspond to the same 
energy: 2*22*2 /2'/2 hh eVmkEmk k −== . We will use k and -k associated with this energy to label the 
forward and backward propagating states, respectively, even though the backward propagating states are 
actually injected with -k’. The subscripts in the transmission and reflection coefficient denote the final 
wavevector and contact (for instance, the reflected wave that originally incident from the left with k, has the 
wavevector -k and remains in the left contact, thus notation Lkr ,− ). What is important is that we adopt a 
potential profile (or, in numerical calculation, couple with a Poisson solver) that will enable us to solve for 

kΨ  and k−Ψ  and find the transmission and reflection coefficients of the forward and backward 
propagating plane waves. Here, for simplicity, a slinear potential drop across the well and barriers is 
adopted, but in general a self-consistent solution (described in more detail below) should be sought. 
Associated with kΨ  ( k−Ψ ) in the active region are the creation and destruction operators +

kd  and kd  

( +
−kd  and kd − ), so that the active region Hamiltonian is described by  

 ( )∑ −
+
−

+ += kkkkkS ddddh ω , (5-63) 

where h/Kk E=ω  (all Hamiltonians and Liouvillians are defined in the units of frequency). Moreover, 
the discussion in this section disregards the spin quantum number, which only adds to the degeneracy; the 
resulting currents at the end of this section should be considered “per spin orientation”. 

The active region communicates with the reservoirs of charge - the contacts. We introduce a model 
interaction for the coupling between the eigenfunctions kΨ  from the active region and the forward 
propagating plane waves, injected from the left contact, as well as the resulting transmitted and reflected 
waves: 

( ) ( ) ( )[ ]∑ ++
−−

++
−

+
+ +++++Δ=

k
RkkkRkkLkLkLkkkLkkLkk cddcTcrcddcRch ,',',,,,,int, . (5-64a) 

+
Lkc ,  ( Lkc , ) and +

Rkc ,'  ( Rkc ,' ) create (destroy) an electron with a wavevector k in the left and k’ in the right 
contact, respectively, while Rk and Tk are the reflection and transmission coefficient at a given energy, 
satisfying Rk+Tk=1.  The model interaction captures injection from the contacts: namely, the coupling 
coefficient kΔ in (5-64a) is the rate of injection of carriers with momentum k from the left contact into the 

active region i.e., it is proportional to the current injected into the state kΨ by the hopping of one electron: 
2/ kk mk Ψ=Δ h , where ( )∫ Ψ=Ψ

W

kk xdx
0

22
 is the norm squared of kΨ  over the active region 

of width W. Similarly, the coefficient multiplying +
− Lkc ,   is the rate of reflection, proportional to the 

reflected current and thus equal to kkR Δ while the coefficient multiplying +
Rkc ,'  is the rate of transmission, 

equal to kkT Δ . The Hamiltonian for the backward propagating states can be written in an analogous 
fashion 

( )[ ] ...,,','int, chdcTdcRch
k

kLkkkRkkRkk +++Δ= ∑ −
+
−−−

+
−

+
−−− .  (5-64b) 

Here, 
2/' kk mk −− Ψ=Δ h  and kk TT =− , kk RR =− . Furthermore, we will assume that bias is swept 

slowly (so that between two bias points the system is allowed to relax) and in small increments (so that the 
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transmission and reflection coefficients and the barrier profile do not change much between two bias 
points, and can be regarded constant during each transient).  

When we put it all together, we have for the interaction Hamiltonian of the active region with the 
left/right contact: 
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Since all the elements of the interaction Hamiltonians are linear in the contact creation/destruction 
operators, and we assume that the initial states of the contacts are thermal equilibrium grand-canonical 
ensembles, 0/int, =RLh . This means that effS LL =  and only leaves us with the first three terms in the 

equation for Λ  to calculate. One can show that RL Λ+Λ=Λ , where  
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The first and the second terms give general contributions of the form αβ
αβΛ , since 2

/int, RLh  preserves the 

filling of states. The third term gives a contribution of the form αα
ββΛ  [201]. Each term in Λ  attacks only 

single-particle states with a given k,  so in reality we have a multitude of two-level problems [201], where 
the two levels are a particle being in kΨ k (“+”) and the particle being absent from  kΨ  (“-“). In each of 
the four-dimensional Liouville spaces associated with each of the two-level problems, the relaxation occurs 
according to  

   ( ) kkkS
k iL

dt
d

ρτ
ρ

Λ−−= , ,     (5-67) 

where [ ]T
kkkkk

−−+−−+++= ρρρρρ ,,,  is the component of the reduced density matrix that describes the 
occupation of kΨ , and  
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and  
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Here, L
kf  and R

kf '  are the Fermi distribution functions in the left and right contact, respectively, 
corresponding to the energy kE   with respect to the conduction band bottom in the left contact (and 

eVEk +  with respect to the conduction band bottom in the right contact). Clearly, the off-diagonal 
elements of the density matrix are zero  in the steady state. The equations for the diagonal components are 
coupled as  
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Clearly, 0=+
−−++

dt
d

dt
d kk ρρ

, as it should be, because kk f=++ρ  and kk f−=−− 1ρ , where kf  is the 

distribution function for the state kΨ  of the active region. The two equations (5-70) are basically one and 
the same, yielding  
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Clearly, the steady state solution ( )kkkk BABf +=∞  (for -k, by analogy), so finally we have  
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In equilibrium (V=0 so k’=k), we automatically obtain R
k

L
kkk ffff === ∞

−
∞ . Note  how, only if the 

transmission is low do we actually get L
kk ff ≈∞  and R

kk ff '≈∞
− , which is the assumption most often used 

in mesoscopic calculations. We see this assumption may not be entirely justified: if there is appreciable 
transmission, the active region feels the distribution functions in both contacts, not just the injecting 
contact! 

The resulting current per spin orientation can be calculated from the quantum-mechanical 
relationship  
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Each of the two current components is constant across the structure. The simplest way to calculate them is 
by focusing on the regions far from the barriers, where the wavefunctions are plane waves. So to the far 
right of the heterostructure,  
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where kktT Rkk /'|| 2
,'=  is the elastic transmission coefficient (the same for both directions and 

dependent on energy only), and LR xxW −=  is the width of the active region (the well, the barriers, and a 
large enough portion of the contacts to arrive at the flatband conditions and also reasonably ensure a 
quasicontinuum of k’s). Similarly, we find the current carried by backward propagating states to be  
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so the total current per spin orientation can be found as  
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Figure 5-7 shows the I-V curve for the RTD of Fig. 4.6, as calculated according to the exact expression (5-
76), and  the Landauer formula for the current per spin orientation  

  { }.'∫ −= R
k

L
kkk

Lan ffTdE
h
ej      (5-77) 

The width of each contact in the calculation is 20 times the width of the well and barriers combined. The 
Landauer formula predicts the peak at a lower voltage and overestimates the peak current with respect to 
the exact solution. The reason is that the distribution functions in the active region coincide with the 
distribution functions in the injecting contacts only for energies for which transmission is not high, i.e., 
away from the resonance; otherwise, a transmitting RTD feels the distribution functions in both contacts. 
All three formulas describe ballistic transport, so no crossing of the curves typical for the inclusion of 
inelastic scattering should be expected. The only difference is that j (5-76) captures the strongly nonlocal 
nature of tunneling.  

 
Figure 5-7: Steady-state I-V curve for the RTD of Fig. 4.6 , according to the exact expression (4.76) (solid 
curve), and the Landauer formula (4.77) (dashed curve), at 77 K. 

  
Our results for ∞

kf  and ∞
−kf  basically give the explicit, exact, ballistic limit of the active region’s reduced 

density matrix away from equilibrium. These results can further be built on to include the electron-electron 
interaction between the active region and contacts or within the active region itself, or to include scattering 
with phonons. Starting from this ballistic nonequilibrium many-body density matrix, Green’s functions 
formalism could be generalized to include scattering in open systems: the ballistic open-system 
nonequilibrium many-body density matrix will be the starting point, as opposed to the closed-system 
noninteracting density matrix [in which the injection from the contacts also has to be put in and is done 
through the injection self-energy terms]. The next Section outlines how, by starting from the open system’s 
techniques basis, one can generalize the single-particle Green’s functions.  

Finally, the Markovian map (5-61) is valid for τΛ>>effL , which basically yields kk ωτ <<Δ2 . 

By approximating Wk ≈Ψ 2
, we obtain, which will be satisfied for fs10≈τ  (appropriate for contact 

doping of about 1020cm-3), in GaAs-based structures whose active region is longer than a few nanometers. 
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5.3 Generalizing Green’s function for a full treatment of dynamically 

open systems 

The seminal work by Kadanoff and Baym [107] (and independently by Keldysh [110]), laid the 
foundation for much of the many-body nonequilibrium transport theory that is used in mesoscopic transport 
today. Actually, these authors were not the first to employ Green’s functions, that have been, till then, 
exclusively field-theoretical tools. The pioneering works on the field-theoretical method implementation to 
condensed matter physics go as far back as 1940’s, with the famous Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy (for a comprehensive overview, see Ref. [202] and references therein) for the 
cluster expansion of the many-body density matrix. This latter work sprung off a whole movement in 
derivations of kinetic master equations, with notable contributions certainly being due to Progogine [203], 
Resibois [204], Zwanzig [205], Balescu [206], and others. Another line of work is based on the 
contributions by Martin and Schwinger [105,106], who introduced functional differentiation as a means of 
systematically constructing non-perturbative approximations for Green’s functions, and these ideas are 
direct predecessors of Kadanoff and Baym’s book [107]. Also, a lot of work on Green’s functions in solid-
state physics was done independently in the former Soviet Union (an example being the evergreen book by 
Abrikosov, Gorkov, and Dzyaloshinskii [111]) and Japan (Matubara’s application of Green’s functions to 
finite temperatures [207], and Kubo’s introduction of periodic boundary conditions for two-time correlation 
functions [60]). This early work on nonequilibrium Green’s functions pointed out that the quantum-
mechanical counterpart of the Boltzmann distribution function is <− iG , where <G  is one of the so-called 
two-time correlation functions. It was also demonstrated that the effect of scattering lies in the broadening 
of the so-called spectral density (i.e., density of states), causing it to transform from a sharply peaked 
Dirac’s δ -function to a broadened Lorentzian-type shape (in the long-time limit). Kadanoff and Baym  
derived equations of motion for the two-time correlation functions in the presence of an external potential 
(Kadanoff-Baym equations) [107]. On the other hand, Keldysh introduced time ordering on the so-called 
Keldysh contour, with the contour-ordered Green’s function being a matrix that contains all four two-time 
Green’s functions, and possessing a perturbation expansion in the form typical for the zero-temperature 
formalism. However, the nonequilibrium Green’s function formalism is inherently defined for closed 
systems that obey Hamiltonian dynamics. The evolution is perfectly reversible, with the well-defined 
Heisenberg and interaction pictures, and consequently, the definitions of the Green’s functions and the 
perturbation expansion.  

The pioneering efforts in the application of nonequilbrium Green’s functions (NEGF) to 
semiconductors are due to Jauho and co-workers [196], but the approach most cited in recent years, 
especially for ballistic structures, is that of Datta and co-workers [198,199,200]. A notable feature about 
this approach is the fact that, although the active region is treated as dynamically closed, the contact/active 
region boundaries are considered to be open, in the sense that the contacts constantly inject electrons. There 
exists a self-energy contribution due to injection from the contacts, which bears information about the 
changes in the energy spectrum and the level broadening due to the coupling with the contacts.  

In this Section, we will point out how nonequilibrium Green’s functons (NEGF), described 
previously in this Chapter, can be adapted to account fully for the dynamical openness of the 
nanostructure’s active region. In a nutshell, one would construct the diagrammatic technique by starting not 
with the Hamiltonian (unitary) dynamics of the active region+contacts full density matrix, but instead with 
the generally non-Markovian and certainly non-unitary evolution of the active region’s reduced density 
matrix alone. The first task is to generalize the closed system’s two-time correlation functions, i.e., 
functions of the type ( ) ( )[ ]tb'ta HHHρTr , where ρ  is the (closed) system density matrix, and a and b 
are two system operators, all given in the Heisenberg picture, as indicated by the subscript H (no subscript 
indicates the Schrödinger picture). A definition of the correlation functions has been attempted previously 
by Haake [208], but, in his work, one was required to use the full evolution of the open 
system+environment, which is precisely what we wish to avoid as best we can. A generalization of the two-
time correlation functions will eventually enable us to define the core transport variables: the “greater-than” 
and “less-than” single-particle Green’s functions, given for closed systems by   
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where the upper sign refers to bosons, and the lower sign to fermions. The field operators, at this point, can 
be the creation or annihilation operators at a point in space, or in a single-particle state. The following 
approach can be easily generalized to higher-order Green’s functions.  

We have already seen that a closed system with Hamiltonian ( )th , which may be time-dependent 
due to external driving forces, the density matrix ρ  in the Schrödinger picture obeys the quantum 
Liouville equation,   
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If a and b are time-independent operators in the Schrödinger picture, it is easily shown that the two-time 
correlation functions can be written as  
 ( ) ( )[ ] ( ) ( )[ ]{ }tbt,'tUatb'ta HHH ρρ TrTr = . (5-79) 

Namely, when written in the Schrödinger picture, the desired expectation value actually means that, at time 
t, b acts on ρ  (actually, b acts on the ‘ket’ part of ρ ), then ( )tbρ  evolves under the quantum Liouville 

equation (i.e., is the argument of ( )t,'tU ), until a acts on the result at time 't . The form on the right-hand-
side of (5-79) is actually the form that allows for a generalization to open systems, while keeping the proper 
physical meaning.  

 

5.3.1   Two-time correlation functions for open systems 
In the system Liouville space 2

SH , multiplication of the reduced system density matrix Sρ  by the system 

creation and annihilation operators, +
Sψ  and Sψ , can be described by superoperators +Ψ  and Ψ  acting 

on Sρ  as a vector in 2
SH . It is understood that the Liouville space is constructed to allow for this action, 

i.e., that, in addition to the states corresponding to a given number of particles (e.g., electrons), which are 
used to construct Sρ , at least the states with 1±  electron are included. This is a computational rather than 
a theoretical requirement, and it suffices when one is interested only in two-time correlation functions, 
meaning that at most one particle is created (annihilated). Accommodation of higher-order Green’s 
functions will require further augmentation of the system Liouville space during computation. 

Within the total system+environment, annihilation of a system particle can be described by the 
superoperator Ψ , of the form SEI ΨΨ ⊗= , which, according to Eq. (5-30b), has a following block-

diagonal form in the eigenbasis of P : 
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Obviously, the creation operator +
Sψ  will be associated with +Ψ . 

We are now almost fully equipped to define the two-time correlation functions for open systems. 
Following the discussion of the introductory part of this Chapter, a definition of ( )',G 11>  for the open 

system requires that, first, a system particle is created at time 't  (i.e., +Ψ  acts on ( )'tρ ), then ρΨ +  
evolves until t , when a particle is annihilated. However, we only need the system point of view of this 

action, not the full system+environment. So, we define two auxiliary variables ( )t't,+Ψρ  and ( )t't,Ψρ  
such that  
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We then define the open system’s “greater-than” and “less-than” Green’s functions as 
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These definitions have exactly the required physical meaning. The information provided by these functions 
is clear after writing Eqs. (5-82) as  
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Before proceeding with the analysis of Eq. (5-83), it is important is to recall that there are two classes of 

states in 2
ES +H : the purely system states, belonging to ( ) 1

2
=+ PESH , and the entangled states, belonging to 

( ) 0
2

=+ PESH . We now see that each of the equations (5-83) contains two terms: one that describes 
propagation within the purely system states, and one that describes the transfer of information between the 
entangled states and purely system states. In Figure 5-8, we have depicted the contributions from the two 
terms to <G . If we were to neglect the system-environment coupling, i.e., if the system were treated as 
closed, only the first term (Figure 5-8a) would survive, so propagation between the purely system states 
and purely system states would be closed-system-like.  

An illustration of the solidity of our definition (5-83) is the form of the average density at a given 
point. Namely,  
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since ( ) 1=t,tU , so ( ) ( ) 01 1211 == t,tU,t,tU , and the result above is exactly what is expected.  
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Figure 5-8. Illustration of the two terms in the definitions of <± iG , from Eq. (5-83). (a) A particle is 
destroyed among the purely system states at t, and created at t’ among the purely system states. (b) A 
particle is destroyed among the entangled states at t, and due to this event the information about the state of 
the environment becomes apparent at t’, when the particle is created among the purely system states.  
 

Having properly defined >G and <G , we can now define the chronological and the 
antichronological Green’s functions, cG and aG , as  

 
( ) ( ) ( ) ( ) ( )
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Writing down the equations of motion for these time-ordered Green’s functions would be the next logical 
step. However, since we do not wish to specify anything about the interaction, and thus cannot a priori 
expect to obtain a Martin-Schwinger-type hierarchy, we will not proceed along these lines. Rather, we will 
focus our interest on the importance of the memory effects on transport.  
 
5.3.2 Transport in the transient regime 
Recently, transients have been receiving enhanced theoretical attention [157,159,160]. For example, much 
work on treatment of initial correlations in nonequilibrium Green’s functions has been done recently [189]. 
Ladder-type diagrams have been obtained as a correction to the diagrammatic expansions due to the initial 
correlations. However, we believe that the introduction of initial correlations, which are undoubtedly very 
important, may be insufficient to describe the relaxation. Here, we will try to achieve an understanding of 
transient processes in general, within the present approach and without necessarily specifying the details of 
the Hamiltonians. We will investigate how exactly the memory effects influence the near-equilibrium 
transport, i.e., how the state of the environment and the entanglement between the system and the 
environment states are observed in the open system’s evolution.  
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During transient processes, the state of S+E can be tracked back to the initial state at time 0t , 

which is assumed to be given by a known density matrix ( )0tρ . There usually exists a typical relaxation 

time relaxτ , during which the transient may be considered to occur, and after which a steady state is 

achieved. Consider ( )',GS 11<  in the transient regime, with the initial time set to 0t , and 

relax0 τ<<< 't,tt . Using Eqs. (5-83) and (5-32b), we obtain  
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Of course, <
SG  measures the probability of ending up in the same system state, after having annihilated a 

particle at time t  at a given position r , and then having created it at a (later) time 't  at r' . Apparently, 
there are four terms that contribute to this correlation function, and are depicted in Figure 5-9. The first 
term is the closed-system-like term (Figure 5-9a), the only one that survives if the coupling between S and E 
is turned off (i.e., if 012 →L ), and the nickname given has to do with the fact that this term describes 
only the influence that the purely system states have on the purely systems states, whereas the information 
on the state of the environment is never incorporated. The last two terms (Figs. 5-9c,d) are the so-called 
memory terms, as they start with the entangled states, so they contain the information on the initial state of 
the environment. These terms are both of the first order in coupling 12L . The second term (Fig. 5-9b) is 
dubbed the entanglement term, as it does start and end with the purely system states, but meanwhile the 
information on the state of the environment is sampled. This term is of the second order in 12L . The 
classification of terms as closed-system-like, entanglement and memory terms retains its meaning even in 
multiple-time correlation functions (for entanglement terms, the requirement will be that the term starts and 
ends with purely system states, but meanwhile at least once the state of the environment is sampled). In the 
light of generalizing the Kadanoff-Baym-Keldysh equations for open systems, we believe that the 
entanglement terms will be possible to treat through a type of correction to the self-energy part, whereas the 
memory terms will unfortunately remain as additive terms in equations of motion. Evaluation of 
submatrices ijU , needed to calculate the open system’s <G  (and >G , in a similar fashion), becomes 
difficult with increasing size of the system and the environment, and direct computation is generally out of 
the question. However, within the time-convolutionless approach, 21U  and 22U  can always be written in 

terms of 11U  and 12U , but formalization of these relationships requires establishing a time t0, so the 
resulting equations of motion are Eqs. (5-41).  
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Figure 5-9. The four terms in <

SG  for an open system in the transient regime, from Eq. (4.86). (a) The 
closed-system-like term; (b) the entanglement term; (c) and (d) the memory terms. 
 

5.3.3  Transport in a far-from-equilibrium steady state 
Reaching a well-controlled steady state, independent of initial conditions, is the goal of applying external 
driving forces in various systems, such as semiconductor devices. By a system in a far-from-equilibrium 
steady state we primarily consider a system driven by an external source (e.g., applied external bias), so 
that after a sufficiently long time its relevant output quantities (e.g., current, conductance, etc.) have 
reached values that no longer significantly vary with time (steady state), and are virtually insensitive to the 
exact preparation of the initial state, and independent of the values that these quantities would have if 
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evaluated in near equilibrium (far-from-equilibrium). Usually, there exists a characteristic relaxation time 

relaxτ , after which the system is considered to be stationary, at least with respect to a collection of 
measured average quantities and within a given margin of error. However, if we enhance the number of 
(independent) measured quantities, and all of them are to be constant in time, then it is a reasonable 
conclusion that the system density matrix Sρ  in a steady state may be considered a constant [209], i.e.,  

 .constS ≈ρ    ( )relaxτ>>t . (5-87) 

The relaxation time is sufficiently long to destroy the information about the initial correlations, and build 
up new ones, in agreement with the external driving forces. If we have no interest in the fine details of the 
relaxation process, but instead just in the steady state properties, and the initially uncoupled system and 
environment is a reasonable approximation, then the evolution of the reduced density matrix in its approach 
to the steady state can be approximated by our coarse-grained semigroup map (5-61) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }tiLttVtttVttiL
dt

d
effSSSeff

S τρρρτρ
Λ−−==⇒Λ−−= exp,,, 000   (5-88a) 

where  
 ( ) ( ) ( ) .0 constttiL SrelaxSrelaxSeff =≡>>→≈>>Λ−− ∞ρτρτρτ    (5-88b) 
 
 

As a consequence of the decoupling requirement, the far-from-equilibrium steady-state <
SG  takes 

on the typical form for closed systems (for  relaxtt τ>>', )   
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The situation seems promising, because the commutator-generated effL can be taken as the the basis for 
defining the unperturbed Hamiltonian (basically the mean-free one), while the remainder of the evolution, 
generated by Λ can be treated perturbatively. Unfortunately, we do not usually know what the far-from-
equilibrium steady-state ∞

Sρ  actually is, and clearly one obtains a single far-from-equilibrium state from 

multiple initial conditions. That is why a criterion such as finding ∞
Sρ  in the intersection of the null spaces 

of effL  and Λ  is particularly useful.  One word of caution: the nonequilibrium steady state does not, in 
general, admit Wick’s decomposition (this was shown for the so-called relevant statistical operator [210] 
that satisfies the self-consistency requirements for a given set of state parameters, and is basically a top-
down approximation for ∞

Sρ ). However, the Dyson equation can be recovered in a manner similar to that 
demonstrated for the so-called mixed Green’s functions [211]. 
 
6. Conclusions 
 
In this review article we have given a brief description of currently most important and most physically 
based semi-classical and quantum transport approaches. Particle-based device simulators can capture the 
essential physics up to ballistic transport regime and, when quantum interference effects start to dominate 
device behavior, quantum transport simulators based on either direct solution of the Schrödinger equation 
or its counterpart, the Green’s functions, have been developed which, with the recent progress of state of 
the art computers, can simulate 3D nanoscale devices within a reasonable time-frame. 

However, nanoelectronic device simulation of the future must ultimately include both, the 
sophisticated physics oriented electronic structure calculations and the engineering oriented transport 
simulations. Extensive scientific arguments have recently ensued regarding transport theory, basis 
representation, and practical implementation of a simulator capable of describing a realistic device. Starting 
from the field of molecular chemistry, Mujica, Kemp, Roitberg, Ratner212 applied tight-binding based 
approaches to the modeling of transport in molecular wires. Later, Derosa and Seminario213 modeled 
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molecular charge transport using density functional theory and Green’s functions. Further significant 
advances in the understanding of the electronic structure in technologically relevant devices were recently 
achieved through ab initio simulation of MOS devices by Demkov and Sankey214 . Ballistic transport 
through a thin dielectric barrier was evaluated using standard Green function techniques215,216 without 
scattering mechanisms. However, quantum mechanical simulations of electron transport through 3D 
confined structures, such as quantum dots, have not yet reached the maturity (it is important, for example, 
for simulating operation of the next generation quantum dot photodetectors). Early efforts of understanding 
the operation of coupled quantum dot structures were rate equation based217,218,219 where a simplified 
electronic structure was assumed. 

Whereas traditional semiconductor device simulators are insufficiently equipped to describe quantum 
effects at atomic dimensions, most ab-initio methods from condensed matter physics are still 
computationally too demanding for application to practical devices, even as small as quantum dots. A 
number of intermediary methods have therefore been developed in recent years. The methods can be 
divided into two major theory categories: atomistic and non-atomistic. Atomistic approaches attempt to 
work directly with the electronic wave function of each individual atom. Ab-initio methods overcome the 
shortcomings of the effective mass approximation; however, additional approximations must be introduced 
to reduce computational costs. One of the critical questions is the choice of a basis set for the representation 
of the electronic wave function. Many approaches have been considered, ranging from traditional 
numerical methods, such as finite difference and finite elements, as well as plane wave expansions 220,221,222, 
to methods that exploit the natural properties of chemical bonding in condensed matter. Among these latter 
approaches, local orbital methods are particularly attractive. While the method of using atomic orbitals as a 
basis set has a long history in solid state physics, new basis sets with compact support have recently been 
developed223,224, and, together with specific energy minimization schemes, these new basis sets result in 
computational costs which increase linearly with the number of atoms in the system without much accuracy 
degradation225,226. However, even with such methods, only a few thousand atoms can be described with 
present day computational resources. NEMO3D uses an empirical tight-binding method 227,228 that is 
conceptually related to the local orbital method and combines the advantages of an atomic level description 
with the intrinsic accuracy of empirical methods. It has already demonstrated considerable success229,230,229 
in quantum mechanical modeling of electron transport as well as the electronic structure modeling of small 
quantum dots231. NEMO3D typically uses sp3s* or sp3d5s* model that consists of five or ten spin degenerate 
basis states, respectively. Note that for the modeling of quantum dots, three main methods have been used 
in recent years: k·p 232,233 , pseudopotentials220, and empirical tight-binding 231.  

As already discussed in Section 3, there are a number of methods developed by solid state theorists 
over the last several decades to address the issue of quantum transport in nano-devices.  Among the most 
commonly used in nanostructure calculations schemes are the Wigner-function approach234, the Pauli 
master equation 235, and the non-equilibrium Green's functions (NEGF)236,237. The growing popularity of the 
latest (sometimes referred to as the Keldysh or the Kadanoff–Baym) formalism is conditioned by its sound 
conceptual basis for the development of the new class of quantum transport simulators238. Among its 
doubtless advantages are the clear physical conceptions, rigorous definitions, well-developed mathematical 
apparatus and flexibility of the algorithmization. 

Thus, in our opinion, the goal of any future simulation effort is to merge the electronic structure 
calculations with the quantum transport calculations and develop a NEGF technique that is numerically 
efficient and ready for engineering applications in 3D objects on the one hand (such as QDIP), and 
rigorously quantum-mechanical on the other hand so that it properly incorporates the electronic structure 
of, for example, regular or disordered quantum dots used in QDIPs. 

The groups from ASU and Purdue are currently working on the development of such simulator in order 
to be able to calculate all the properties of 3D open quantum systems, particularly QDIPs. The transport 
kernel of the simulator is based on the Contact Block Reduction (CBR) method127,128 and is discussed in 
more details in section 4 of this review article. As already noted, the CBR method is applicable to fully 
self-consistent quantum transport calculations in arbitrarily shaped 3D structures using either the effective 
mass approximation or the mutli-band Hamiltonian description. The band-structure of the QDIP’s will be 
calculated using NEMO3D simulation software . 

In summary, from the discussion above it follows that the ultimate goal of semiconductor transport 
calculation of future nanoscale devices will be to merge the 3D quantum transport approaches with ab-
initio band structure calculations. This will ensure the most accurate simulation and better understanding 
carrier transport and operation of novel nano-device structures. 
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