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Theoretical description of

Anderson localization 

 Supersymmetric nonlinear s –model

 Random matrix theory

 Self-consistent theory of Anderson localization

 Lattice models

 Random walk models





From single scattering to

Anderson localization
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Anderson localization of electrons: 

Experimental signatures

Exponential scaling of average transmission with L

L

Diffuse regime:

Localized regime:

Measured by D.S. Wiersma et al., Nature 390, 671 (1997)



HOP!



Anderson localization of electrons: 

Experimental signatures

Rounding of the coherent backscattering cone

Measured by J.P. Schuurmans et al., PRL 83, 2183 (1999)



Anderson localization of electrons: 

Experimental signatures

Enhanced fluctuations of transmission

Diffuse regime:

Localized regime:

Measured by A.A. Chabanov et al., Nature 404, 850 (2000)



And what if we look in dynamics ? 

L



Time-dependent transmission:

diffuse regime (L )

Diffusion equation

Boundary conditions

+



Time-dependent transmission:

diffuse regime (L ) 

How will             be modified when localization is approached ?



Theoretical description of

Anderson localization 

 Supersymmetric nonlinear s –model

 Random matrix theory

 Self-consistent theory of Anderson localization

 Lattice models

 Random walk models



Self-consistent theory of

Anderson localization 



Self-consistent theory of

Anderson localization 

The presence of  loops increases return probability

as compared to ‘normal’ diffusion

Diffusion slows down

Diffusion constant should be renormalized



Generalization to open media 

Loops are less probable near the boundaries

Slowing down of diffusion is spatially heterogeneous

Diffusion constant becomes position-dependent



Quasi-1D disordered waveguide 

Number of transverse modes:

Dimensionless conductance:

Localization length:



Mathematical formulation 

Diffusion equation

Boundary conditions
+

Self-consistency condition
+



Stationary transmission: W = 0



‘Normal’ diffusion: g  

Path of integration

Diffusion poles



‘Normal’ diffusion: g  



‘Normal’ diffusion: g  



From poles to branch cuts: g  

Branch cuts



Leakage function PT()



Time-dependent diffusion constant

Diffuse regime:

Closeness of localized regime is manifested by



Time-dependent diffusion constant



Time-dependent diffusion constant

Data by A.A. Chabanov et al. PRL 90, 203903 (2003)
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Time-dependent diffusion constant

Center of mass

Width



Time-dependent diffusion constant

Consistent with supersymmetric nonlinear s-model 

[A.D. Mirlin, Phys. Rep. 326, 259 (2000)] for



Breakdown of the theory for t > tH

Mode picture
Diffuse regime:



Breakdown of the theory for t > tH

Mode picture
Diffuse regime:

The spectrum is continuous

‘Prelocalized’ mode



Breakdown of the theory for t > tH

Mode picture
Diffuse regime:

Only the narrowest mode survives

‘Prelocalized’ mode



Breakdown of the theory for t > tH

Mode picture
Diffuse regime: Localized regime:

The spectrum is continuous There are many modes



Breakdown of the theory for t > tH

Mode picture
Diffuse regime: Localized regime:

Only the narrowest mode survives in both cases

Long-time dynamics identical ?



Breakdown of the theory for t > tH

Path picture



Breakdown of the theory for t > tH

Path picture



Beyond the Heisenberg time

Randomly placed screens with random transmission coefficients



Time-dependent reflection
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‘Normal’ diffusion

Localization

Consistent with RMT result: M. Titov and C.W.J. Beenakker, PRL 85, 3388 (2000)

and 1D result (N = 1): B. White et al. PRL 59, 1918 (1987)



Generalization to higher dimensions

 Our approach remains valid in 2D and 3D

 For                             and                 we get



Consistent with numerical simulations in 2D:

M. Haney and R. Snieder, PRL 91, 093902 (2003)



Conclusions

 Dynamics of multiple-scattered waves in quasi-1D

disordered media can be described by a

self-consistent diffusion model up to 

 For                         and               we find a linear

decrease of the time-dependent diffusion constant

with            in any dimension

 Our results are consistent with recent microwave

experiments, supersymmetric nonlinear s-model,

random matrix theory, and numerical simulations



HOP!



Application 1





Application 2

Electrical transport in granular 

metals

Variable range hopping



Variable-range hopping is a model used to describe carrier transport in 

disordered systems by hopping through localized states in an extended 

temperature range. It has a characteristic temperature dependence of 

where   is a parameter dependent on the model under consideration. 

Hopping mechanism is a term coined to denote the combination of thermal 

activation and tunneling. Thermal activation and tunneling, nominally 

independent, can actually couple to give

HOPPING=TUNNELLING+THERMAL  ACTIVATED TRANSPORT



Granular metals are composites consisting of a random mixture of nanometer-sized 

metal and insulator grains. As a function of metal volume fraction, the structure and 

electrical properties of the granular metals can be divided into two regimes, separated 

by the percolation threshold. In the metal-rich regime, metal grains form a connected 

network, and electrical conduction is by electron percolation through the metallic 

channels. In the insulator-rich regimes, metal grains are dispersed in the matrix of the 

insulator. In this dielectric regime the electrical transport is via the hopping mechanism.

Insulating 

behavior

Metallic 

behavor



































A Mott transition is a metal-nonmetal transition in

condensed matter.

A Mott Transition is a change in a material's

behavior from insulating to metallic due to various

factors.

The physical origin of the Mott transition is the

interplay between the Coulomb repulsion of

electrons and their degree of localization (band

width). Once the carrier density becomes too high,

the energy of the system can be lowered by the

localization of the formerly conducting electrons

(band width reduction), leading to the formation of a

band gap.

https://en.wikipedia.org/wiki/Nevill_Francis_Mott
https://en.wikipedia.org/wiki/Condensed_matter



