Dynamics of
Anderson localization
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Anderson Localization

—

Extended state with mean free path J4 Localized state with localization length {

Lee and Ramakrishnan Rev. Mod. Phys. 57 (1985)



Anderson localization (1957)
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Theoretical description of
Anderson localization

Supersymmetric nonlinear o —model
Random matrix theory

Self-consistent theory of Anderson localization

Lattice models

Random walk models
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From single scattering to
Anderson |ocalization

Localization length &
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Anderson localization of electrons:
Experimental signatures

Exponential scaling of average transmission with L

0 Diffuse regime:
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Measured by D.S. Wiersma et al., Nature 390, 671 (1997)
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Anderson localization of electrons:
Experimental signatures

Rounding of the coherent backscattering cone
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Measured by J.P. Schuurmans et al., PRL 83, 2183 (1999)



Anderson localization of electrons:
Experimental signatures

Enhanced fluctuations of transmission

0 Diffuse regime:
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Measured by A.A. Chabanov et al., Nature 404, 850 (2000)



And what If we look in dynamics ?
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Time-dependent transmission:
diffuse regime (L ® [X])

D o O .
(T(t)) = —2—8 —C(z=L,7 = £,Q)e *%dQ
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Diffusion equation
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Boundary conditions
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Time-dependent transmission:
diffuse regime (L ® [X])
1

t/tp
How will (Z'(t)) be modified when localization is approached ?




Theoretical description of
Anderson |ocalization

Supersymmetric nonlinear o —model
Random matrix theory

Self-consistent theory of Anderson localization

Lattice models

Random walk models



Self-consistent theory of
Anderson localization
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Self-consistent theory of
Anderson localization

The presence of loops increases return probability
as compared to ‘normal’ diffusion

L L

Diffusion slows down

L L

Diffusion constant should be renormalized Dg — D < Dg



Generalization to open media

Loops are less probable near the boundaries

v
Slowing down of diffusion is spatially heterogeneous

v
Diffusion constant becomes position-dependent

DB — D(I‘) < DB



Quasi-1D disordered waveguide
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Number of transverse modes: N = sz/(47r)
Dimensionless conductance: g=(4/3)N{/L

Localization length: £ = (2/3)NY



Mathematical formulation

Diffusion equation
. % 0 / /
[—ZQ — —D(z, Q)—] C(z,2,Q2) =6(z—2")
z 0z

+

Self-consistency condition
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Stationary transmission: 2 =0




‘Normal’ diffusion: g %
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‘Normal’ diffusion: g %
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‘Normal’ diffusion: g %

A Im Q2
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From poles to branch cuts: g

A Im Q2

Branch cuts
NN >
g Re
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Leakage function P(<9)

¢ = 10000

Pr(a)

@ Ip



Time-dependent diffusion constant

(T'(t)) x exp

BtD

fdt D(t’ )_

D(t) = _DBtD% In (T'(%))

Diffuse regime: ¢g > 1, D(t) = Dg for t > tp

Closeness of localized regime is manifested by D(t) < Dg




Time-dependent diffusion constant
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Time-dependent diffusion constant
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Data by A.A. Chabanov et al. PRL 90, 203903 (2003)



Time-dependent diffusion constant
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Time-dependent diffusion constant
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Consistent with supersymmetric nonlinear o-model
[A.D. Mirlin, Phys. Rep. 326, 259 (2000)] for t < gtp = tH



Breakdown of the theory for t >t

Mode picture
Diffuse regime: A < 6
A~
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Breakdown of the theory for t >t

Mode picture
Diffuse regime: A < 6

— ‘Prelocalized’ mode
é—
N
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t <ty

The spectrum Is continuous



Breakdown of the theory for t >t

Mode picture
Diffuse regime: A < 6

— ‘Prelocalized’ mode

<
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t > tH
Only the narrowest mode survives




Breakdown of the theory for t >t

Mode picture
Diffuse regime: A <« ¢ Localized regime: A > 6

A ~tot - A

| |

E(w)|?

Jk B 6J\E

M A =

W] wows wa ws "] whwa @4 ws
t <tH t <1tnH

The spectrum Is continuous There are many modes



Breakdown of the theory for t >t

Mode picture
Diffuse regime: A <« ¢ Localized regime: A > 6

E(w)|?

)\ i
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t > tH t > 1TH

Only the narrowest mode survives in both cases
Long-time dynamics identical ?



Breakdown of the theory for t > t,,
Path picture




Breakdown of the theory for t >t
Path picture

I ° o \

‘Coherent’ volume = )3
Volume

33
Time needed to visit all coherent volumes ~ t

{1

For t >ty any path will cross itself with probability 1

Number of coherent volumes =

(‘return probability’ = 1, as in 1D)



Beyond the Heisenberg time

T et

Randomly placed screens with random transmission coefficients
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Time-dependent reflection

i | 'J..I IIIII| | IIIIII| | | IIIII_ - .

T 1070 N < = ‘Normal’ diffusion

n ]
c 10 F E
G-_) E \\\ n
O er ]
E= =10 55_ 3 o
0 & EbpT SO <« Localization

[— ) — AN 1

O [ 2]
- 10 TEx O IE Ity N =10
@) Al ] ]
S oL ] a N =20
e = 0 S R N B 3
© T 0 atx10? 1 N O L>E>/
m ‘]O_S ] ] IIIIII| ] ] IIIIII| ] 1L 1 11111

10° 10° 10 107 [¢

v H — OO

Time ——

Consistent with RMT result: M. Titov and C.W.J. Beenakker, PRL 85, 3388 (2000)
and 1D result (N = 1): B. White et al. PRL 59, 1918 (1987)



Generalization to higher dimensions

= Our approach remains valid in 2D and 3D

= For tp <t <tH and 7 > )\ we get

D(t t t
D) _ 4 4b_pt
Dg tH tH
"ty = (A)_l = DOS x Volume
2
DOS = (2D), —= — (3D)
TUVE T=VE

Consistent with numerical simulations in 2D:
M. Haney and R. Snieder, PRL 91, 093902 (2003)



Conclusions

= Dynamics of multiple-scattered waves in quasi-1D
disordered media can be described by a
self-consistent diffusion model up to ¢ = ¢4

» For ip<t<ty and £> A wefind a linear
decrease of the time-dependent diffusion constant
with t/tH in any dimension

= Qur results are consistent with recent microwave
experiments, supersymmetric nonlinear c-model,
random matrix theory, and numerical simulations
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Application 1

Tuning the conductance of single-walled
carbon nanotubes by ion irradiation in the
Anderson localization regime

C. GOMEZ-NAVARRQ', P. J. DE PABLO", J. GOMEZ-HERRERO™, B. BIEL?, F. J. GARCIA-VIDAL?, A.
RUBIO® AND F. FLORES?

'Departamento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

“Departamento de Fisica Tedrica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

Departamento de Fisica de Materiales, Universidad del Pafs Vasco UPV/EHU and Donostia International Physics Center (DIPC), E-20018-San Sebastidn, Spain
“g-mail: julio.gomez@uam.es
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Figure 1 Experimental setup. a. AFM image (1 um x 1 pmj) of an SWNT adsorbed on an insullating substrate connected 1o a gold electrode (bottom). The inset is a scheme
of the experimental setup showing a gold-covered AFM tip, the macroscopic gold electrode, the SWNT and the circuit used. b-d, Plots of the [\R versus length for three
metalic SWNTs as depasited on the surface, without Fradiation. The data are fitted to equation (1). The values of R, and L, obtained for the best ft are depicted i each
chart. The error bars represent one standard deviation. [Author: 0K7?] Data for the nanotube m b after irradiation are presented in Fig. 2.

R(L) = R+ 1/2R,exp(L/L,)

where R_ is the contact resistance, R, is the inverse of the quantum
of conductance G, = 2¢’*/h (where ¢ is the charge on the electron and
h is Planck’s constant;[ Author: OK?] the 1/2 factor in equation (1)
accounts for the two conductance channels of a metallic SWNT, see
below) and L, is the localization length. The exponential resistance



Application 2

Electrical transport in granular
metals
Variable range hopping



Variable-range hopping is a model used to describe carrier transport in
disordered systems by hopping through localized states in an extended
temperature range. It has a characteristic temperature dependence of

i H
T = rrg.ﬂ_[T”"T]

where B is a parameter dependent on the model under consideration.

Hopping mechanism is a term coined to denote the combination of thermal
activation and tunneling. Thermal activation and tunneling, nominally
independent, can actually couple to give

i H
7 = ﬁgﬂ_[T”"T]

HOPPING=TUNNELLING+THERMAL ACTIVATED TRANSPORT



Granular metals are composites consisting of a random mixture of nanometer-sized
metal and insulator grains. As a function of metal volume fraction, the structure and
electrical properties of the granular metals can be divided into two regimes, separated
by the percolation threshold. In the metal-rich regime, metal grains form a connected
network, and electrical conduction is by electron percolation through the metallic
channels. In the insulator-rich regimes, metal grains are dispersed in the matrix of the
insulator. In this dielectric regime the electrical transport is via the hopping mechanism.
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PHYSICAL REVIEW B 78, 165418 (2008)

Percolation in nanoporous gold and the principle of universality for two-dimensional to
hyperdimensional networks

G. B. Smith, A. I. Maaroof, and M. B. Cortie
Department of Physics and Advanced Materials and Institute for Nanoscale Technology, University of Technology, Sydney, P.O. Box 123,
Broadway, New South Wales 2007, Australia
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FIG. 3. (Color online) Resistance of a growing gold film on
glass as a function of volume (or area) fraction f of gold. Images
included show characteristic morphology at each stage of gold cov-

erage. Models for d=2 and d=3 percolation are included, along
with a critical curve for a=2.2.



Mott variable-range hopping | edit]

The Mott variable-range hopping describes low-temperature conduction in strongly disordered systems with localized charge-carrier states!?! and has a characteristic
temperature dependence of

e 14
o = gge T/T)

for three-dimensional conductance (with 4 = 1/4), and is generalized to d-dimensions

s L{d+1)
o = ggeT0/T] .

Efros—Shklovskii variable-range hopping | edi |

See also: Coulomb gap

The Efros—Shklovskii (ES) variable-range hopping is a conduction model which accounts for the Coulomb gap, a small jump in the density of states near the Fermi level due
to interactions between localized electrons ® It was named after Alexei L. Efros and Boris Shklovskii who proposed it in 1975 )

The consideration of the Coulomb gap changes the temperature dependence to
e L S ]
o = ayeT/T)

for all dimensions (i.e. 3 = 1/2).[E1]
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Variable-range hopping
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rate of phonon-
assisted tunneling:
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Electron conduction in NC arrays

Conventional hopping models:
: PPINg Each site has one encrgy level:

_ filled or empty.
Conductivity is tuned by:
S S e J7; S —— T
- insulating material
o - — disorder in
Aheatie b energy/coordinate

- Fermi level u

In nanocrystal arrays: ; —
’ . Energy level spectrum is tailored by:
Each “site” is a NC, with - s1z¢

a spectrum of levels:

= COMPOSILOn

- shape

\ ...... i - -
— surface chemistry

- magnensm

— superconductivity

- ¢CtC.



Electron conduction in NC arrays

—
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Conductivity reflects the interplay between individual energy
level spectrum and global, correlated properties.



Experiment: metallic NCs

range of shapes:

precise control over tuncable metal/insulator
size/spacing: transition: »
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Model of an array of metal NCs

000
000

990

metallic NCs

Uniform, spherical, regularly-
spaced metallic NCs with
insulating gaps

insulating

gaps

Large internal density of states:
spacing between quantum levels

20



Model of an array of metal NCs
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High tunncling barriers
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Tunneling between NCs is
weak:
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Single-NC energy spectrum

A single, isolated NC:
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O

ground
state

energy
levels:
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Coulomb self-energy:
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Single-NC energy spectrum =

Multiple-charging:
e \ Coulomb self-energy:
E. =e2C,
— (26 )ZQCO
E
& each NC has
— 2E a periodic
I ‘ spectrum of
ground p—mae energy levels
state
——— = Same spectrum
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evels: S that gives rise to
the Coulomb
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Density of Ground States

Disorder randomly shifts
NC energies:

E
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“Density of ground states”
(DOGS): distribution of

> 8\(E) lowest empty and highest filled
energies across all NCs
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Variable-range hopping
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rate of phonon-
assisted tunneling:
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¢ = localization length
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Variable-range hopping

rate of phonon-
assisted tunneling:

2r AE
["ocexp| ———
& kT
¢ = localization length
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R; o< exp




log resistivity (a.u.)
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Efros-Shklovskii conductivity =
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J. Phys. Chem. B 2001, 105, 8291—8296 8291

Temperature-Dependent Electron Transport through Silver Nanocrystal Superlattices

R. Christopher Doty,” Hongbin Yu,* C. Ken Shih,* and Brian A. Korgel*

Department of Chemical Engineering and Texas Materials Institute,

Center for Nano- and Molecular Science and Technology, University of Texas, Austin, Texas 78712-1062,

and Department of Physics and Texas Materials Institute, Center for Nano- and Molecular Science and
Technology, University of Texas, Austin, Texas 78712-1062

(A) (B)

~

Figure 2. TEM images of (A) size-polydisperse (3.8 + 0.8 nm)
dodecanethiol-capped silver nanocrystals and (B) size-monodisperse
(3.7 £ 0.3 nm) dodecanethiol-capped silver nanocrystals.
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TABLE 1: Parameters

Temperature (K)

Figure 5. Conductivity versus temperature data for silver nanocrystal
films: (a) size-polydisperse sample; size-monodisperse samples with
diameters of (b) 7.7 nm: (c) 5.5; (d) 4.8: (e) 4.5: (f) 3.5.

diameter

activation

Thr agat Tyy T, conductance energy,
nanocrystals  (nm) (K) (1075Q") (K) exponent, v £, (eV)
polydisperse )

sample (a)
fraction 1 (b) 717 225 0.47 500 0.67 0.038
fraction 2 (c) 55 241 1.8 300 1.22 0.069
fraction 3 (d) 48 2445 1.1 300 1.34 0.079
fraction 4 (e) 42 245 0.63 325 1.35 0.080
fraction 5 (f) 35 245 0.98 350 1.34 0.008

A Mott transition is a metal-nonmetal transition in
condensed matter.

A Mott Transition is a change in a material's
behavior from insulating to metallic due to various
factors.

The physical origin of the Mott transition is the
interplay between the Coulomb repulsion of
electrons and their degree of localization (band
width). Once the carrier density becomes too high,
the energy of the system can be lowered by the
localization of the formerly conducting electrons
(band width reduction), leading to the formation of a
band gap.
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Figure 6. Plot of transition temperature (7, 9) and activation energy

(E;, @) of dodecanethiol-capped silver nanocrystals as a function of
particle diameter.
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https://en.wikipedia.org/wiki/Nevill_Francis_Mott
https://en.wikipedia.org/wiki/Condensed_matter



