
Università di Catania Corsi di Laurea in Ingegneria Informatica ed Ingegneria Elettronica Prova Preliminare di Fisica I F. Ruffino

Catania, 27 Luglio 2020

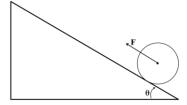
2 ore a disposizione

Problema n.1

Si considerino i due piani inclinati mostrati in figura che nel punto più basso sono raccordati con un piccolo arco di circonferenza e che formano con l'orizzontale gli angoli α =60° e β =30°, rispettivamente.

Da una quota h_0 =1.0 m un corpo puntiforme di massa m_1 =m= 1.0 kg, viene lanciato (verso il basso) lungo il piano inclinato di destra con una velocità iniziale $\overrightarrow{v_0}$; tale corpo, dopo aver raggiunto il punto più basso, risale lungo il secondo piano inclinato e urta in modo perfettamente anelastico un secondo corpo (anch'esso puntiforme) di massa m_2 =2m fermo (fino a quel momento) ad una quota h_0 /2 (vedi figura).

Nell'ipotesi che dopo l'urto il corpo (venutosi a formare) raggiunga esattamente la quota h₀, determinare:


- a) il modulo di $\overrightarrow{v_0}$;
- b) l'energia dissipata nell'urto.

[Suggerimenti: 1) Supporre che la zona di raccordo tra i piani inclinati sia così piccola da poter trascurare ogni perdita di velocità dei corpi nel passaggio da un piano all'altro. 2) Trascurare ogni tipo di attrito]

Problema n.2

Un cilindro pieno, di raggio R=15.0 cm e massa M=50.0 kg è tirato (in salita) da una forza \vec{F} lungo un piano inclinato di un angolo θ =20° rispetto all'orizzontale (\vec{F} è applicata all'asse del cilindro ed è parallela al piano inclinato, vedi figura) e, a causa di ciò, effettua un moto di puro rotolamento a velocità costante. Trascurando ogni tipo di attrito, determinare:

- a) la velocità del centro di massa del cilindro se esso possiede una energia cinetica pari a 31 J;
- b) il modulo della forza \vec{F} .

Problema n.3

Ad una quantità n=2.0 mol di un gas ideale viene fatto seguire il ciclo costituito dalle seguenti trasformazioni reversibili: un'espansione isoterma (1 \rightarrow 2); una compressione isobara (2 \rightarrow 3); una compressione adiabatica (3 \rightarrow 1). Per gli stati 1 e 2 si ha p₁=5.0 atm, V₁=13.0 l e V₂=4V₁. Dopo aver rappresentato qualitativamente il ciclo in un piano p-V, determinare:

- a) la temperatura degli stati 1 e 2;
- b) la temperatura dello stato 3 e il rendimento η del ciclo a seconda che il gas utilizzato sia monoatomico o biatomico; per quale di questi il rendimento è maggiore?

Problema n.4

10 g di acqua alla temperatura di 20 °C sono trasformati in vapore a 250 °C e a pressione atmosferica. Assumendo per il calore molare a pressione costante del vapore l'espressione $C_p=a+bT+cT^2$ (con a= 8.81 cal/mole·K; b= $-1.90\cdot10^{-3}$ cal/mole·K²; c=2.22·10⁻⁶ cal/mole·K³) calcolare la variazione di entropia del sistema. [Calore latente di evaporazione dell'acqua a 100 °C, λ =538 cal/g]